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AMATYC Contest (Spring 2006)               SOLUTIONS
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[A]  The thousands place has to be 2 or 6, then exactly one of the remaining places is the other nonzero digit.  The two places left are 0s.  This gives 
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3. [C]  
[image: image3.wmf])

tan(

)

tan(

1

)

tan(

)

tan(

)

tan(

GDH

m

GAH

m

GDH

m

GAH

m

GDH

m

GAH

m

Ð

×

Ð

-

Ð

+

Ð

=

Ð

+

Ð



 EMBED Equation.3  [image: image4.wmf]1

1

2

1

3

1

2

1

3

1

=

×

-

+

=

.  Therefore 
[image: image5.wmf]°

=

Ð

+

Ð

45

GDH

m

GAH

m

.   The answer follows.
4. [B]   The cost of the first horse is 
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, and the loss of selling is $50.  Thus the profit from selling the second horse is also $50, therefore the cost of the second horse is 
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5. [C]   
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.  The answer follows.
6. [A]   
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.  The answer follows.
7. [B]   The key is that 5 and 7 are coprime, so are 5 and 8, whereas 6, 8 are not coprime.  So, if I is true, then 
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 is rational.  Likewise, if III is true, then 
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 is rational.  Whereas, with 
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 is not rational.
8. [B]  Let 
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 be the set of all positive integers less than 1000 that are divisible by 
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9. [B]  Since 
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 and 
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 are the two solutions to 
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10. [E]  Drop at 12 ft.  If it breaks, then, with 11 trials remaining, drop at 1ft, then 2 ft, then 3ft, etc. until it breaks or until the trials run out.  Else (if dropping at 12 ft didn’t break the ball) jump to drop at 
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ft, etc. until it breaks or until the trials run out.  Else (if dropping at  
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 ft didn’t break the ball) jump to drop at 
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 ft.  If it breaks, then, with 9 trials remaining, drop at 
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ft, etc. until it breaks or until the trials run out.  Continue this way.  Such a strategy can determine with certainty the greatest whole number of feet from which a ball can be dropped without breaking provided it is no greater than 
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11. [A] Let 
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 be the point on 
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 is a 5:4:3 right triangle (as 65:52:39 is 5:4:3.)  The area of the pentagon is the area of the trapezoid
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12. [A]  Let the increasing nonnegative integers be 
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13. [E]  First, note that 
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14. [D]  The sum of the three digits are from 1, 3, 5, 7, 9.  Their sum has to be divisible by 9, and so can be 9, 18, 27.  For a sum of 9, it has to be 711, 531, 333, or numbers resulting from rearranging the digits – there are 
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possibilities.  A sum of 18 is impossible, as all three digits are odd.  A sum of 27 comes from only 999.  So we have a total of 11 possibilities.
15. [C]  
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16. [D]  If 
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18. [D]  
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19. [D]  A composite number is not circumfactorable precisely when it is of the form 
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20. [A]  There are 
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