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AMATYC Contest (Spring 2011)               SOLUTIONS
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4. [A]  Let the sum of the 3rd and the 4th be 
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5. [B]  The first series: 
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[image: image142.wmf][image: image143.wmf][image: image144.wmf][image: image145.wmf][E]  The first sentence implies that 8 was the 4th number originally, so 4 is the 3rd.  The answer follows.
7. [B]  8 2x3s won’t work: It’s impossible to cover the 3-cell column.  12 1x4s won’t work: The 3 cells on the far left have to be covered by 3 horizontal 1x4s, necessitating a horizontal one at the left end of both the 1st and the 5th rows; the same argument is repeated one more round, then it’s clear it won’t work.  16 1x3s would work: Fill the 3-cell col with a single 1x3, with the rest covered by horizontal 1x3s.  Now prove that 24 1x2s won’t work: Suppose it did.  Among all such coverings there would be one minimizing the number of horizontal 1x2s.  This covering must have no two horizontal 1x2s side by side forming a square, otherwise they could be replaced by 2 vertical 1x2s, contracting the assumption of minimization.  Work our way from the far left.  There should be exactly 1 horizontal 1x2 protruding from the 1st col into the 2nd col, in the 2nd or the 4th row.  Then there should be 2 horizontal 1x2s protruding from the 2nd col into the 3rd col, as shown.     Then there must be exactly one horizontal 1x2 protruding from the 3rd col into the 4th col, in the 4th (or the 2nd) row.  Then things begin to repeat themselves, ultimately with an isolated corner cell when we first intrude into the last col--and get stuck.  Thus the answer.
8. [C]  The smallest integer 
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10. [E]  We work our way from the leading digit, trying to make the number as small as possible.  So we start with 11, then the next digit must be 3 to get 113.  Then try 1131, and try 11311, thus 113113.  Now we see the pattern, leading to 1131131131.
11. [B]  Scaling both sequences if necessary, assume the arithmetic sequence as 1, 
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.  For the first case, the arithmetic sequence is (after scaling by 6) 6, 5, 4, 3, …, and the geometric sequence is 16, 36, 81, 729/4, …, with the product sequence disagreeing with what’s given at the 4th term.  The second scenario works, with the arithmetic sequence (after scaling by 4) 4, 5, 6, 7, 8, …, and  the geometric sequence 24, 36, 54, 81, 243/2, ….. So 
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13. [C]  Calculate 
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14. [C]  The palindrome 
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16. [C]  Let 
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20. [C]  The four primes are separated, creating five spaces (including one to the far left and one to the far right), with 
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