Some Review Problems for Exam 2 – Chem 1B

(Note: this selection of problems is NOT comprehensive!)

Useful Information:

$Ag^+ + e^- \rightarrow Ag$	$E^{\circ} = +0.799 \text{ V}$
$Cr^{3+} + 3 e^{-} \rightarrow Cr$	$E^{\circ} = -0.740 \text{ V}$
$Au^{3+} + 3e^{-} \rightarrow Au$	$E^{\circ} = + 1.498 \text{ V}$
H_2CO_3 $K_{a1} = 4.3 \times 10^{-7}$, $K_{a2} =$	5.6×10^{-11}
H_3PO_4 $K_{a1} = 7.5 \times 10^{-3}$, $K_{a2} =$	$= 6.2 \times 10^{-8} \text{ K}_{a3} = 4.2 \times 10^{-13}$

substance	ΔH _f °, kJ/mol	ΔG _f °, kJ/mol	S°, J/K•mol
	- 216.6	- 153.1	294.9
$(CH_3)_2CO_{(g)}$			
$(CH_3)_2CO_{(l)}$	- 247.6	- 155.7	200.04
$H_{2(g)}$	0	0	130.68
$CO_{(g)}$	- 110.5	- 137.2	197.7
CH _{4(g)}	- 74.6	- 50.5	186.3
$H_2O_{(g)}$	- 241.83	- 228.72	188.835
$H_2O_{(l)}$	- 285.83	- 237.1	69.95

1. The indicator HX has a pK_a of 3.9. Its acid form is yellow and its base form is blue. What color will this indicator be in a solution of pH 5.0?

2. Oxalic acid $(H_2C_2O_4)$ $K_{a1} = 5.9 \times 10^{-2}$, $K_{a2} = 6.4 \times 10^{-5}$

You have a solution containing 0.020 moles of $HC_2O_4^-$ and 0.050 moles of $C_2O_4^{-2-}$ in 500. mL of solution.

- a. How many moles of which buffer component must be added to change the pH to 3.80? How many grams, if it is in the form of its sodium salt?
- b. For the original buffer, what volume of 2.00~M HCl or 2.00~M NaOH must be added to change the pH to 3.80?
- 3. If 70.0 mL of 0.100 M HCl is added to 50.0 mL of 0.100 M Na₃PO₄, what is the pH of the resulting solution?
- 4. Describe three different ways of making 500. mL of a buffer with a pH of 7.00 in which the least concentrated buffer component is 0.20 M.
- 5. a. Calculate the pH at the 1/4 of the way point and at the 3/4 of the way point for the titration of 25.0 mL of 0.10 M CH₃NH₂ ($K_b = 5.0 \times 10^{-4}$) with 0.10 M HBr.
 - b. Calculate the pH at the equivalence point.
 - c. Calculate the pH after $30.0\ mL$ of HBr has been added.
 - d. What would be a good indicator to use for this titration? Explain.
- 6. What volume of 0.20 M HCl would you add to 100 mL of 0.10 M Na₂CO₃ to make a buffer with a pH of 10.00?
- 7. You have a solution that is 0.010 M Ag⁺ and 0.010 M Ba²⁺. If you slowly add Na₂SO₄, which will precipitate first?

$$K_{sp} Ag_2 SO_4 = 1.4 \times 10^{-5}, K_{sp} BaSO_4 = 1.1 \times 10^{-10}$$

What is the concentration of the first cation when the second cation starts to ppt?

1

8. Determine the solubility of AgCl in 5.0 M NH₃. K_{sp} AgCl = 1.8 × 10⁻¹⁰, K_{f} Ag(NH₃)₂⁺ = 1.5 × 10⁷

- 9. Find the overall equilibrium constant for : (see prob. #2 for K_a values) $MgC_2O_{4(s)} + 2 H_3O^+ \Leftrightarrow Mg^{2^+} + H_2C_2O_4 + 2 H_2O$ K_{sp} of $MgC_2O_4 = 8.5 \times 10^{-5}$
- 10. 50.0 mL of 0.20 M MgSO₄ is mixed with 50.0 mL of 0.20 M Na₃AsO₄. Will a precipitate form? K_{sp} Mg₃(AsO₄)₂ = 2 × 10⁻²⁰

What are the ion concentrations afterward?

- 11. Determine the solubility of PbI₂ in 0.50 M NaI. $K_{sp} = 4.1 \times 10^{-8}$ Compare this to the solubility of PbI₂ in water.
- 12. a. Calculate ΔG° for the following reaction at 150.°C:

$$3 H_{2(g)} + CO_{(g)} \rightarrow CH_{4(g)} + H_2O_{(g)}$$

Is it spontaneous under standard conditions at this temperature?

- b. Is this reaction enthalpy-driven, entropy-driven, both, or neither?
- c. How could you adjust the temperature to make this reaction as spontaneous as possible?
- d. Calculate the equilibrium constant for this reaction at 150.°C.
- e. If you mix together 0.010 atm hydrogen, 0.010 atm carbon monoxide, 5.0 atm methane, and 5.0 atm steam (at 150°C), which way will the reaction go to reach equilibrium?
- f. Calculate the temperature at which this reaction should become nonspontaneous under standard conditions.
- g. If you have 0.010 atm hydrogen, 5.0 atm methane, and 5.0 atm steam (at 150°C), what would the pressure of carbon monoxide need to be to make the reaction nonspontaneous?
- 13. a. For the process: $(CH_3)_2CO_{(g)} \rightarrow (CH_3)_2CO_{(l)}$ Predict the signs of ΔH° and ΔS° .
 - b. Is this process enthalpy-driven, entropy-driven, both, or neither?
 - c. Is the reverse process ((CH₃)₂CO $_{(l)} \rightarrow (CH_3)_2CO _{(g)}$) enthalpy-driven, entropy-driven, both, or neither?
 - d. Estimate the normal boiling point of acetone, (CH₃)₂CO. (The actual bp is 56°C.)
 - e. Estimate the vapor pressure of acetone at 30.°C.
 - f. At what temperature would acetone have a vapor pressure of 600. torr?
- 14. If a reaction is endothermic and the sign of ΔS is positive, under what conditions of temperature will the reaction be spontaneous: at all temperatures, no temperatures, high temperatures, or low temperatures? Explain.
- 15. All S° (entropy) values for substances listed in the appendix are positive values. Explain why, in light of the third law of thermodynamics.
- 16. For the reaction: $3 H_{2 (g)} + N_{2 (g)} \rightarrow 2 NH_{3 (g)}$ $K = 5.89 \times 10^5 \text{ at } 25^{\circ}\text{C}$ and $K = 6.87 \times 10^{-5} \text{ at } 500.^{\circ}\text{C}$.
 - a. Predict the signs of ΔH° and ΔS° .
 - b. Use this information to calculate ΔH° and ΔS° for this reaction.
- 17. Is Li⁺ a good reducing agent?
- 18. $Ni^{2+} + 2e^{-} \rightarrow Ni$ $E^{\circ} = -0.28 \text{ V}$ Is this spontaneous?
- 19. Balance the following redox reaction. It occurs in basic solution.

$$P_4 \rightarrow H_2PO_2 + PH_3$$

20. Balance the following redox reaction. It occurs in acidic solution.

$$MnO_4$$
 + C_2O_4 ² \rightarrow Mn^{2+} + CO_2

- Identify the substance oxidized, the substance reduced, the oxidizing agent, and the reducing agent. (#20 continued)
- What is the best oxidizing agent and the best reducing agent in the following list: 21. Na, Na⁺, Br₂, Br⁻, Co, Co²⁺, Fe, Fe²⁺, Fe³⁺, H₃O⁺, H₂, Au, Au³⁺
- Does solid iron react with acid? Does solid gold react with acid? 22.
- If a Ag/Ag⁺ half-cell is connected to a Cr³⁺/Cr half-cell. 23.
 - a. What is the cell voltage under standard conditions?
 - b. Sketch the cell. Label the sketch.
 - c. How could you adjust the concentrations of Ag⁺ and Cr³⁺ to increase the voltage?
 - d. Calculate the cell voltage if $[Ag^+] = 2.0 \times 10^{-4} \text{ M}$ and $[Cr^{3+}] = 0.80 \text{ M}$.
 - e. Calculate ΔG° and K for the overall reaction.
 - f. If the cell voltage = 1.413 V when $[Cr^{3+}] = 0.50$ M, what is the $[Ag^{+}]$?
- If ΔG° for a reaction is positive at a particular temperature, does the reaction go forward 24. at all? What might it depend on?
- 500. mL of a buffer contains 0.153 moles of $H_2PO_4^-$ and 0.266 moles of HPO_4^{2-} . If 50. 25. mL of 0.65 M HCl is added to this solution, what is the resulting pH?
- For the reaction: $PbCl_{2(s)} = Pb^{2+}_{(aq)} + 2Cl_{(aq)} \Delta H^{\circ}$ is positive and (even though this 26. is counterintuitive) ΔS is negative. Will this solid be more soluble, less soluble, or equally soluble in warmer water? Explain your reasoning.

Answers:

- 1. blue
- 2. a. 0.10 mol HC₂O₄, 12 g NaHC₂O₄ b. 0.030 mol HCl, 15 mL HCl
- 3.
- a. Mix $0.10 \text{ mol HPO}_4^{2-}$ and $0.16 \text{ mol H}_2\text{PO}_4^{-}$ 4.
 - b. Mix 0.26 mol HPO₄²⁻ and 0.16 mol HCl
 - c. Mix 0.26 mol H₂PO₄ and 0.10 mol NaOH

(can now convert these numbers of moles to g or mL, as appropriate.)

- 5. a. 11.18, 10.22 b. 6.00 c. 2.0
- 6.

- 34 g/L
- BaSO₄, $[Ba^{2+}] = 7.9 \times 10^{-10} M$ 7.
- K = 23
- a. yes b. $[Na^+] = 0.30 \text{ M}, [SO_4^{2-}] = 0.10 \text{ M}, [AsO_4^{3-}] = 0.033 \text{ M}, [Mg^{2+}] = 2.6 \times 10^{-2} \text{ M}$ 10
- In 0.50 M NaI, 7.6×10^{-5} g/L. In water, 1.0 g/L 11.
- 12. a. -115.2 kJ, yes

d. 54°C

b. enthalpy-driven

e. 310 mm Hg

c. lower T

f. 47°C

d. 2×10^{14}

14. high T

e. forward (ΔG -)

16. a. both negative

f. 687 °C

b. $\Delta H^{\circ} = -92 \text{ kJ}$

g. 1.5×10^{-7} atm

 $\Delta S^{\circ} = -199 \text{ J/K}$

a. both negative 13.

No – can't be oxidized 17.

b. enthalpy

18. Can't tell

c. entropy

- 20. Mn is reduced, C is oxidized, MnO_4 is ox. agent, $C_2O_4^{\ 2^-}$ is red. agent
- 21. Best ox agent: Au³⁺
 Best red agent: Na_(s)
- 22. yes, no
- 23. a. 1.539 V c. increase [Ag⁺], decrease [Cr³⁺] d. 1.322 V e. – 382.7 kJ/mol f. 6×10⁻³ M Ag⁺
- 24. yes depends on what you start with.
- 25. pH = 7.31
- 26. more soluble