Some Review Problems for Exam 1 – Chem 1A

(Note: this set of problems is **not** comprehensive. Make sure to review everything on the "Things to Know" handout and the lecture notes.)

1. For the reaction:

$$AlCl_{3 (aq)} + Mg_{(s)} \rightarrow Al_{(s)} + MgCl_{2 (aq)}$$

- a. How many moles of magnesium are required to react with 5.0 moles of aluminum chloride?
- b. If you start with 50.0 mg of magnesium, how many moles of aluminum can be formed?
- c. Starting with 3.00 g AlCl₃, calculate the mass of Mg needed to react.
- d. If you would like to produce 5.0×10^{24} atoms of Al, how many cubic centimeters of Mg must you start with, if Mg has a density of 1.738 g/cm³?
- 2. Calculate the mass percent of each element in $Fe_2(C_2O_4)_3$.
- 3. Write the balanced equation for the combination reaction that would occur between aluminum metal and fluorine gas.
- 4. a. If you mix 20.0 grams S_8 and 10.0 grams Cl_2 , what mass of S_2Cl_2 will be formed?

$$S_{8 (s)} + Cl_{2 (g)} \rightarrow S_2Cl_{2 (g)}$$

- b. What mass of Cl₂ is needed to produce 85.0 kg of disulfur dichloride?
- c. If the percent yield of this reaction is known to be 86.5 %, what mass of S_8 should you start with to obtain 25.0 g of disulfur dichloride?
- 5. Rubidium (Rb) consists of two isotopes, ⁸⁵Rb and ⁸⁷Rb. Which is more abundant? Explain how you can tell.
- 6. How many hydrogen atoms are in 2.0 nanograms (ng) of pentane (C_5H_{12}) ?
- 7. A compound containing C, H, and O is analyzed by combusting the compound and collecting the water and carbon dioxide produced. If 2.317 g of the compound produces 6.111 g CO₂ and 1.390 g H₂O, determine the empirical formula of this compound.
- 8. If 5.00 g of Al(OH)₃ and 8.00 g of HCl are mixed,
 - a. Write the balanced equation for this reaction.
 - b. What mass of water will be obtained?
 - c. What is the mass of the excess reactant remaining?
- 9. If 50.0 grams of octane (C_8H_{18}) was burned in excess oxygen, what masses of carbon dioxide and water would be produced?
- 10. The density of $CO_{2 (g)}$ at room temperature and pressure is 1.80 g/L. How many CO_2 molecules are there per cubic inch of volume? (1 in = 2.54 cm)
- 11. Silicon has three stable isotopes. Their masses and percent natural abundances are shown below. Calculate the weighted-average atomic mass of silicon.

²⁸Si 27.97693 amu 92.23 % ²⁹Si 28.97649 amu 4.67 % ³⁰Si 29.97376 amu 3.10 %

12. Write the balanced net ionic equations for the following reactions. Also be able to write the molecular and total ionic equations.

1

$$CuSO_{4 (aq)} + Na_3PO_{4 (aq)} \rightarrow Ba(OH)_{2 (aq)} + HC_2H_3O_{2 (aq)} \rightarrow$$

$$Na_2S_{(aq)} + AgNO_{3(aq)} \rightarrow$$

 $HI_{(aq)} + Li_2CO_{3(aq)} \rightarrow$
 $H_2SO_{3(aq)} + excess KOH_{(aq)} \rightarrow$

- An unknown compound is 54.5 % C, 13.7 % H, and 31.8 % N by mass. Its molar 13. mass is approximately 90 g/mol. Determine the empirical formula and the molecular formula of this compound.
- 14. Be able to name all of the compounds on this handout. Be able to classify each of the reactions on this handout.
- 15. a. How many grams of H_2SO_4 are in 50.0 mL of 6.0 M $H_2SO_{4 \text{ (aq)}}$? b. What volume of 2.35 M NaOH solution will contain 5.00 g NaOH? c. If 35.0 g of Na₂SO₄ are dissolved in 253 mL of solution, what is the molarity of Na₂SO₄ in the solution?
- Given the following oxidation-reduction reactions, determine all oxidation 16. numbers and state which element is oxidized and which element is reduced.

a.
$$Mn^{2+} + H_2O_2 + 2OH^- \rightarrow MnO_2 + 2H_2O$$

b. $Cr_2O_7^{2-} + 6Cl^- + 14H^+ \rightarrow 2Cr^{3+} + 3Cl_2 + 7H_2O$

- Using the activity series in your textbook, predict the outcome of the following: 17.
 - a. $Al_{(s)} + H_2SO_{4 (aq)} \rightarrow$
 - b. $Pb_{(s)} + Sn(NO_3)_{2 (aq)} \rightarrow$
 - c. $\operatorname{Sn}_{(s)} + \operatorname{Pb}(\operatorname{NO}_3)_{2 \text{ (aq)}} \rightarrow$
- Silver consists of two isotopes, ¹⁰⁷Ag with a mass of 106.90509 amu, and ¹⁰⁹Ag 18. with a mass of 108.9047 amu. Calculate the abundance of each isotope.
- 19. Name each of the following compounds.

(NH₄)₂SO₃ PI_3 SnCl₂ AuIO₄ $H_2C_2O_4$ Cu₂CrO₄

Write formulas for each of the following compounds. 20. barium acetate carbon disulfide

sulfuric acid silver oxide

lead (IV) hypobromite aluminum carbonate

- How many protons, electrons, and neutrons are in an atom of ¹⁰⁹Ag? 21.
- 22. Give three examples of each of the following:
 - a. inner transition elements
 - b. halogens
 - c. elements in the 5th period
 - d. main group elements
- 23. Balance and classify each of the following reactions:

$$\overline{a. \quad N_2O_{(g)} \rightarrow \quad N_{2(g)} + \quad O_{2(g)}}$$

b.
$$C_7H_{14}O_{2 (l)} + O_{2 (g)} \rightarrow H_2O_{(g)} + CO_{2 (g)}$$

- 24. Write and balance the equation for the combination reaction that would occur between potassium metal and nitrogen gas. Include phase symbols.
- 25. Titanium has a density of 4.51 g/cm³. Calculate the volume of a 2.00 kg piece of titanium, in cubic inches. (1 inch = 2.54 cm exactly)
- 26. $HBr_{(aq)} +$ $Al_{(s)} \rightarrow H_{2(g)} +$
 - a. What mass of HBr is required to react with 0.500 g of aluminum?

- b. How many molecules of H₂ will be produced from this reaction? (Starting with 0.500 g Al)
- 27. $Fe_{(s)}$ + $H_2O_{(g)} \rightarrow$ Fe_3O_4 (s) $H_{2(g)}$

If 50.0 g iron and 30.0 g water are combined,

- a. What mass of iron oxide will be formed in theory?
- c. What mass of the excess reactant will be left over?
- d. If the actual yield of iron oxide is 60.2 g, calculate the percent yield of this reaction.

Answers:

- 7.5 mol 1a.
- 0.00137 mol 1b.
- 1c. 0.820 g
- $1.7 \times 10^{2} \text{ cm}^{3}$ 1d.
- 2. 29.73 % Fe 19.18 % C 51.10 % O
- 3. $2A1 + 3F_2 \rightarrow 2A1F_3$
- 4a. 19.0 g
- 44.6 kg 4b.
- 13.7 g 4c.
- ⁸⁵Rb is more abundant 5.
- 2.0×10^{14} atoms 6.
- $C_9H_{10}O_2$ 7.
- $Al(OH)_3 + 3 HCl \rightarrow 3 H_2O +$ 8a. $AlCl_3$
- 8b. 3.46 g
- 0.99 g left 8c.
- 9.
- 154 g CO₂, 71.0 g H₂O 4.04×10^{20} molecules/in³ 10.
- 11. 28.09 amu
- see separate sheet of answers 12.

- $ef = C_2H_6N$, $mf = C_4H_{12}N_2$ 13.
- 15. a. 24 g H₂SO₄
 - b. 53.2 mL solution
 - c. 0.974 M Na₂SO₄
- a. Mn is ox, O is red. 16
 - b. Cr is red., Cl is ox.
- a. will react, b. won't, c. will 17.

react (see answers for reactions.)

Using wt. ave mass of 107.8682

from the per. table in the text, abundance

of
107
Ag = 51.835% and 109 Ag =

- 48.165%
- 19, 20: see answers
- 47 protons, 47 e⁻, 62 n⁰
- 22, 23, 24: see answers
- 27.1 in^3 25.
- 26a. 4.50 g HBr
- 1.67×10^{22} H₂ molecules 26b.
- 27a. 69.1 g Fe₃O₄
- 8.5 g water left 27b.
- 87.1 % yield 27c.