Electron-Transport Chain and ATP production

Occurs in the inner mitochondrial membrane where NADH and FADH₂ are oxidized back to NAD+ and FAD. They transfer their e- in a series of steps and ultimately to O2:

$$O_2$$
 + $4e^-$ + $4H^+$ \rightarrow $2H_2O$

The energy released in these e- transfers is used to pump H+ (protons) out of the matrix into the intermembrane space. This produces a <u>proton gradient</u> (different [H+] on each side) – a state of high potential energy.

- **1a.** At enzyme complex I, NADH is oxidized to NAD⁺ and e⁻ are transferred between different proteins in this cluster, then to coenzyme Q (CoQ or Ubiquinone). Protons are pumped.
- **1b.** FADH₂ is oxidized (transfers its e⁻) to the CoQ at enzyme complex II. The reduced CoQ joins the rest of the "chain".
- **2.** The reduced CoQ travels to enzyme complex III where the e- are transferred between proteins and then to cytochrome c. Protons are pumped.
- **3.** Cytochrome c travels to the enzyme complex IV where the e- are transferred between proteins and then to O2 to form water. More protons are pumped.

The H⁺ ions that have been pumped into the intermembrane space can only get back into the matrix through <u>ATP Synthase</u>. The energy released as H⁺ flow back to the matrix is coupled with the formation of ATP:

$$ADP + P_i \rightarrow ATP + H_2O$$
 (oxidative phosphorylation¹)

Each NADH that enters the electron transport chain produces 3 ATP molecules (i.e H⁺ ions are pumped at complexes I, III and IV) whereas each FADH₂ (that joins the "chain" at complex two) produces 2 ATP molecules (i.e H⁺ ions are pumped only at complexes III and IV)

1

¹ Notice that the name oxidative phosphorylation applies to the formation of ATP at the ATP Synthase in contrast with the substrate level phosphorylation.

Energy obtained from a complete catabolism of glucose

- 1. Glycolysis
- **2.** Pyruvate \rightarrow acetyl-CoA
- 3. Citric Acid Cycle
- 4. Electron transport chain

		ATP count
1. From Glycolysis (in cytoplasi	m)	
For each glucose	2 ATP's used	-2
	4 ATP's formed	+4
	2 NADH produced (*3 ATP)	+6
(Each NADH from glycolysis needs to be transported to the matrix in the mitochondria at a "cost" of 1 ATP each.)		-2
	Total	6
2. 2 Pyruvate → 2 acetyl-CoA		
2 NADH molecules forme	ed (*3 ATP)	+6
(This NADH is already in necessary.)	the mitochondria and no transport is	
necessary.)	Total	6
3. Citric Acid Cycle (and Electron transport chain) From each acetyl-CoA we get 3 NNADH, 1 FADH ₂ and 1 ATP. Two acetyl-CoA enter the cycle (if we started with 1 glucose).		
6 NADH	(*3 ATP)	+18
2 FADH_2	(*2 ATP)	+4
2 ATP		+2
	Total (for two)	2/

You have to be able to:

Calculate the total # ATP obtained, starting at <u>any</u> step of the metabolism (glycolysis, pyruvate \rightarrow acetyl-CoA or the C.A.C.)

Describe the type of reaction in each step.