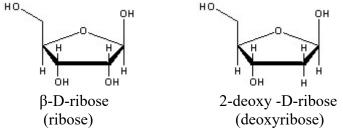
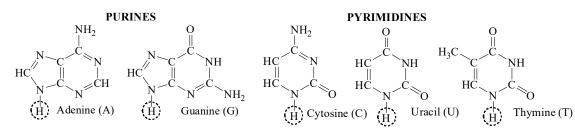

# Nucleic Acids (Structure)

Nucleic acids determine and control the functioning of cells.


DNA – deoxyribonucleic acid and RNA – ribonucleic acid.

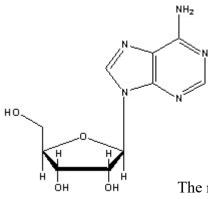
Both nucleic acids are polymers of **<u>nucleotides</u>**. Nucleotides contain a phosphate group, a sugar and a nitrogen base.




You already know the structure of the phosphate group.

Notice that in this nucleotide the sugar ( $\beta$ -D-ribose, found in RNA) is an aldopentose. If you wanted to draw the sugar found in DNA, then you have to remove the Oxygen atom from C-2' (keep in mind that the C atoms in the sugar are numbered in a clockwise direction).




The nitrogen bases, which are heterocyclic rings containing nitrogen, can be divided in two classes according to the number of rings they have. They are:



Both nucleic acids contain the nitrogen bases: Adenine, Guanine and Cytosine, but Thymine appears only in DNA, whereas Uracil in RNA.

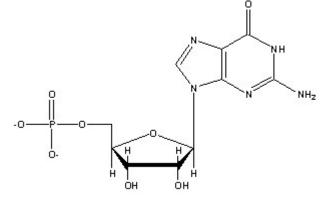
### (Don't need to memorize them!)

If the structure contains just the carbohydrate and the nitrogen base, it is known as a **<u>nucleoside</u>**.



The names of nucleosides are given according to the type of N-base.

If the nucleoside contains a *purine* (two rings), the name of the structure will end with "\_\_\_\_\_osine". (Adenosine, Guanosine)


On the other hand, if the N-base is a *pyrimidine* (one ring), the name will end with "\_\_\_\_\_idine". (Cytidine, Thymidine, Uridine)

The name of this nucleoside is: "Aden*osine*", but if we change the carbohydrate for deoxyribose, then the name would be "*Deoxy*aden*osine*".

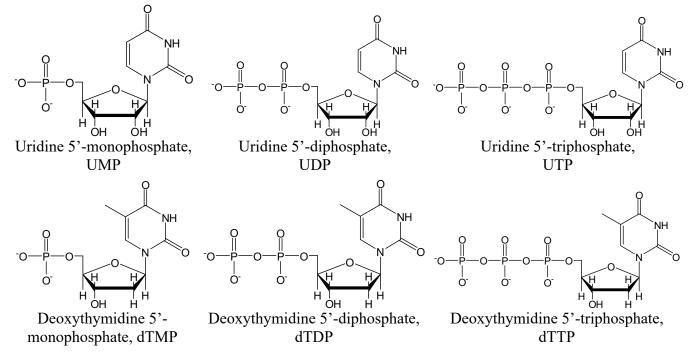
The following table (next page) summarizes the composition of the nucleosides, and the way in which the names are abbreviated.

| Nucleosides    |                      |              |  |
|----------------|----------------------|--------------|--|
| Name           | Composition          | Abbreviation |  |
| Adenosine      | Adenine-ribose       | А            |  |
| Deoxyadenosine | Adenine-deoxyribose  | dA           |  |
| Guanosine      | Guanine-ribose       | G            |  |
| Deoxyguanosine | Guanine-deoxyribose  | dG           |  |
| Cytidine       | Cytosine-ribose      | С            |  |
| Deoxycytidine  | Cytosine-deoxyribose | dC           |  |
| Thymidine      | Thymine-ribose       | Т            |  |
| Deoxythimidine | Thymine-deoxyribose  | dT           |  |
| Uridine        | Uracil-ribose        | U            |  |
| Deoxyuridine   | Uracil-deoxyribose   | dU           |  |

Nucleotides have a phosphate group on C-5'.



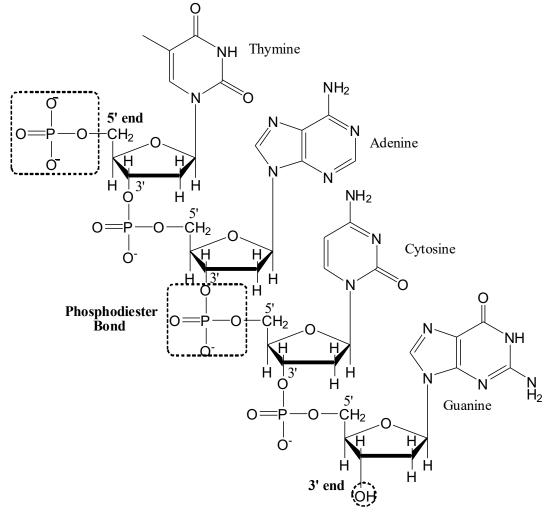
To give the name to the nucleotide we simply need to consider the new structure added, which is one phosphate group on C-5'.


The name of this nucleotide would be:

Guanosine 5'-monophosphate or GMP

(Notice that we use the nucleoside name.)

Any nucleotide can bond to additional phosphate groups:

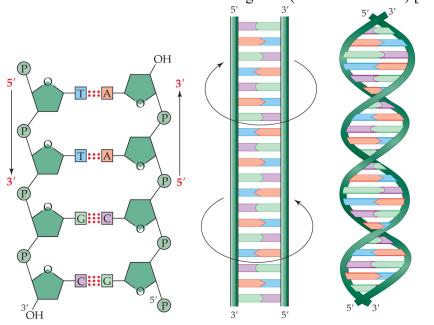

Look at the following examples with ribose and deoxyribose respectively:



**Note:** *You must be able to draw any nucleotide given the name or abbreviation*. (E.g. Guanosine 5'-monophosphate, dCDP, ATP, etc.)

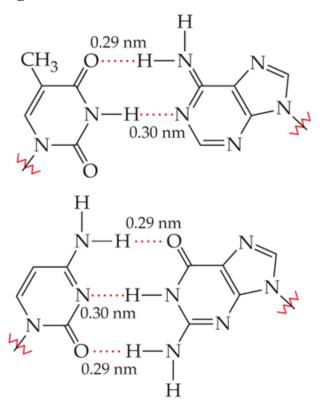
# Primary structure of DNA

As we mentioned before, nucleic acids (DNA, RNA) are polymers of these nucleotides. The sequence of nucleotides forms the primary structure of DNA.




Notice three points: 1) The phosphate and the carbohydrate form a backbone.

2) The chain has a 'free' phosphate group at the 5' end and a 'free' hydroxide group at the 3' end.


3) The nucleotides are bonded together by a phosphodiester group.

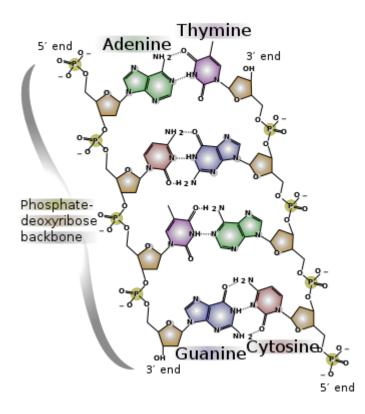
## **Secondary structure of DNA – The double helix** Double helix – two strands twisted together ("Twisted ladder") [Watson & Crick 1953]



The two chains are oriented in opposite directions, and held in place by means of H-bonds between Nitrogen bases.

### Hydrogen bonds between N-bases:




 $\begin{array}{ll} A=T & (2 \text{ H-bonds}) \\ G\equiv C & (3-H \text{ bonds}) \end{array}$ 

As we can see, a purine will H-bond to a pyrimidine. This situation results in a constant width for the ladder and it is known as "complementary base pairing".

'A' can not pair with 'G or 'C', 'G' can not pair with 'A' or 'T'.

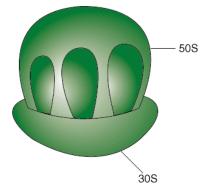
| If one strand is:          |
|----------------------------|
| The other strand would be: |

| 5'-A-T-G-T-C-C-A- | -3' |
|-------------------|-----|
| 3'—T-A-C-A-G-G-T- | -5' |

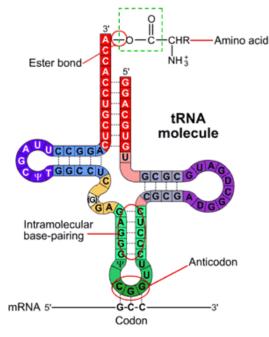


# **Types of RNA**

Differences between DNA and RNA:


- > The Carbohydrate: RNA uses ribose instead of deoxyribose.
- ▶ Nitrogen base: Uracil instead of Thymine.
- > RNA is single stranded.
- ▶ RNA is not as long as DNA.

There are three main types of RNA:


Messenger RNA (mRNA) – carries the genetic information from DNA in the nucleus to the ribosomes where protein synthesis occurs.



Ribosomal RNA (rRNA) – is present in the ribosomes (cellular organelles made of RNA and proteins), which in turn are made of two subunits (one small and one large).



Transfer RNA (tRNA) – "interprets" the genetic code and delivers amino acids to the ribosome.



free to copy for educational purposes

Acknowledgments:

"Twisted ladder" [Watson & Crick 1953] Fundamentals of General, Organic and Biologival Chemistry. McMurry, et Al., Sixth Edition, page. 817.

H-bonds formed by nitrogen bases Fundamentals of General, Organic and Biologival Chemistry. McMurry, et Al., Sixth Edition, page. 818.

Base pairing: http://en.wikipedia.org/wiki/DNA

Transfer RNA http://www.tutorvista.com/biology/types-of-dna-and-rna