Some Review Questions for the Final Exam – Part 2 – Chem 30B

(Note: this selection of problems is **not** comprehensive!)

- 1. Be able to explain the general steps in:
 - a. DNA replication
 - b. RNA transcription
 - c. protein translation
 - d. the electron transport chain and ATP production
- 2. What are the roles of the three different types of RNA?
- 3. Why are frameshift mutations more serious than substitution mutations?
- 4. Look over the steps in glycolysis, the citric acid cycle, and the β-oxidation reactions. Try to find an example of a reaction catalyzed by: an oxidoreductase, a ligase, a lyase, an isomerase, a transferase, and a hydrolase.
- 5. Compare the digestion of carbohydrates, fats, and proteins.
- 6. Draw the Fischer projections of glucose, fructose, and galactose.
- 7. Draw the ring forms of each of the above sugars.
- 8. What is the difference between D-glucose and L-glucose?
- 9. How many chiral carbons does galactose contain? How many does fructose contain?
- 10. Draw the structures of maltose, lactose, and sucrose.
- 11. Draw the following types of glycosidic bonds connecting two molecules of glucose:
 - a. α -1,4 glycosidic bond
 - b. α-1,6 glycosidic bond
 - c. β-1,4 glycosidic bond
- 12. What are the differences between glycogen, cellulose, amylose, and amylopectin?
- 13. What is the difference between an enantiomer and a diastereomer?
- 14. What is mutarotation, and what is its significance? What types of sugars can undergo mutarotation?
- 15. List all of the categories of lipids, and explain their structural differences. Give an example of each. What is each category used for?
- 16. Explain how soaps are made.
- 17. Explain how soaps clean oily or greasy things.
- 18. Explain some of the different ways of denaturing proteins.
- 19. Discuss the different levels of protein structure.
- 20. Why is the tertiary structure of an enzyme important?
- 21. Draw the structure of Ile-Arg-Phe-Glu at pH 7.0.
- 22. For the following types of tertiary structure interactions, give an example of sidechains that would interact in that way.
 - a. hydrophobic interactions
 - b. hydrogen bonding
 - c. disulfide bridges
 - d. hydrophilic interactions
 - e. salt bridges (ionic interactions)
- 23. What are some possible functions of proteins in the body?
- 24. What are the ways in which enzymes speed up reactions?
- 25. Why does one particular enzyme speed up one reaction and not just any reaction?

- 26. Discuss the different types of enzyme inhibition.
- 27. What is a cofactor?
- 28. Draw the structure of dCMP (deoxycytidine monophosphate).
- 29. Draw the structure of a trinucleotide of RNA with U on the 5' end, G in the middle, and A on the 3' end.
- 30. Draw an A-T base pair and a G-C base pair.
- 31. Here is the sequence of a short section of one strand of DNA. What is the sequence of the complementary strand, and how are the strands oriented relative to each other?

 3' AATTGCGCTATAAGGTCA 5'
- 32. Given the same sequence as above, determine the sequence of the complementary mRNA. Then determine the sequence of the corresponding protein. (Keep in mind actual DNA, RNA, and proteins are **much** longer than this!)
- 33. Come up with two possible mutations to the above DNA sequence: one that would make a significant change in the sequence (and therefore structure) of the resulting protein, and another that would not make much of a difference in the structure of the resulting protein.
- 34. Explain the 3-D structure of DNA.
- 35. What is an anticodon?

My recommendation for studying:

- 1. Read through all of your lecture notes.
- 2. Go over the "things to know" handouts.
- 3. Make your sheet of notes.
- 4. Look over your tests, quizzes, and the review problems for all of the exams. If you have time, re-do the problems. If not, at least look over the answers.