

1. The compound called DMAP is shown below.
a. Indicate the hybridization for each of the nitrogen atoms.
b. Identify what type of orbital each of the lone pair of electrons is in.
c. Indicate whether each lone pair of electrons is localized or delocalized.

2. For the structure shown below, push electrons to show the other resonance form. Circle the major resonance form and provide the reason for your choice.

3. Consider the three compounds below. Indicate which compound has the largest $\mathrm{p} K_{\mathrm{a}}$ and which has the smallest $\mathrm{p} K_{\mathrm{a}}$. Use ARIO to justify your answers (don't forget about the conj. bases)
middle pk a
a.

b.

lever sooble

c.

oxygen is more
electinnegotinl than
N, so better able to
support Θ change

most stable since.
mod now element is

$$
\begin{aligned}
& \text { Hod now elaneut is } \\
& \text { largest and more able } \\
& \text { t) saront a } \theta \text { charge }
\end{aligned}
$$

$$
\text { lo suggest and a } \theta \text { charge }
$$

4. Given the information about the equilibrium ($K_{\text {eq }}$), answer the following:
a. Which ammonium ion, A or B , is the stronger acid? $-B$
b. Which amine, pyridine or DMAP, is the stronger base? $\rightarrow D M A D$
c. Suggest a reason for the difference in acidity of A and B.
d. Use electron pushing to show the proton transfer in the acid/base reaction.
(20 points)

5. Trifluoromethanesulfonic acid (aka triflic acid) is one of the strongest known acids. Use ARIO to explain the difference in acidity between methanesulfonic acid and trifluoromethanesulfonic acid (don't forget about the conjugate base).
(15 points)

6. Strychnine is an exceedingly toxic compound - ingesting as little as 20 mg can be fatal. Circle and name as many of the common functional groups as you can.
(25 points)

7. The two valid resonance structures for trimethylphosphine oxide are shown below. Which one is the major one. Clearly explain the reasoning for your choice.
(20 points)

the charge separated stricture is best because
Bod now and and now elements do not form stable π bond, which is shown in the stricture on the right.

8. For the following reactions, for the reactants (items on the left), identify the Lewis acid and the Lewis base. Show with electron pushing how the reaction proceeds. For question c., also show what the expected product would be - the Lewis acid/base complex that is formed.
(20 points)

$$
\text { Lewis base }=L . B . \quad \text { Lewis ain } d=L . A .
$$

Page 1 of 5

$$
(\operatorname{Lob} B)
$$

1. The natural product citral is found in many essential oils, particularly in citrus oils. You might guess what it smells like.
(10 points)

Citral
a. What is the molecular formula for citral? $\quad \mathrm{C}_{10} \mathrm{H}_{16} O$
b. How many valence electrons does citral have? Are they all shown in the structure above? If not, what's missing?
$\begin{array}{ll}C_{10} & 40 \\ H_{16} & 16 \\ 0 & \frac{46}{72}\end{array}$
72 valence elections

- 2 lone pains on oxygen!

2. Draw a molecule that has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$ that has only the "common" functional groups discussed in Chapter 2 (it could have more than one!).
a. It should be drawn using bond-line structures with any lone pairs of electrons clearly shown.
b. Label the functional groups

Only draw one molecule! (points will be lost for multiple structures...)
(20 points)

lots of other passaitites,
3. For the following molecules,
i. Draw bond-line drawings that show the expected geometry (use dashes and wedges where necessary).
ii. In your structures, clearly show any lone pairs of electrons.
iii. Indicate whether the molecule has a permanent dipole moment ($\mu \neq 0 \mathrm{D}$), if it does, then indicate the direction of the overall dipole, or if it doesn't have a permanent dipole moment ($\mu=0 \mathrm{D}$)
(30 points)
a. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$

b. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}$

c. $\mathrm{CH}_{2} \mathbf{N}_{2}$

4. Assign formal charges (if non-zero) to the appropriate atoms in the following molecules (or ions). (Note that all lone pairs of electrons are shown in each structure)
(10 points)
a.

a. $: C \equiv 0$:
b.

5. Ammonia $\left(\mathrm{NH}_{3}\right)$ has a dipole moment (μ) of 1.42 D , whereas nitrogen trifluoride $\left(\mathrm{NF}_{3}\right)$ has a value of 0.234 D . Suggest a reason for the dramatic difference between these two otherwise similar molecules. (Hint: carefully consider the structure, polarity, and geometry)

6. Consider the structure shown below.

a. Label the hybridization for each of the atoms (except hydrogen).
b. What type of atomic orbital (s) do the three lone pairs on the oxygen occupy? (are they all the same?) Two lone pairs are in $s p^{2}$ arhitaly - the thiset Lone pair is
c. Show the other resonance form using electron pushing. in a $2 p$ orbital so that it. can be in resename with the it bond.
7. Ketene, shown below, is a very reactive compound used for preparing esters and amides, and also, derivatives of amino acids. For every bond in the molecule, indicate which type of bond it is (π or σ) and what atomic orbitals are used to form them (hybridized orbitals are considered atomic orbitals). Also, what type of orbitals are the oxygen lone pairs of electrons in (are they both in the same type?). (note: there are 5 unique bonds that need identifying).
(25 points)

$$
(\operatorname{tab} A)
$$

1. The natural product carvone is found in many essential oils, particularly in spearmint oil. You might guess what it smells like.
(10 points)

a. What is the molecular formula for carvone?

$$
\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}
$$

b. How many valence electrons does carvone have? Are they all shown in the structure above? If not, what's missing?

2. Draw a molecule that has the molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}$ that has only the "common" functional groups discussed in Chapter 2 (it could have more than one!).
a. It should be drawn using bond-line structures with any lone pairs of electrons clearly shown.
b. Label the functional groups.

Only draw one molecule! (points will be lost for multiple structures...)
(20 points)

3. For the following molecules,
i. Draw bond-line drawings that show the expected geometry (use dashes and wedges where necessary).
ii. In your structures, clearly show any lone pairs of electrons.
iii. Indicate whether the molecule has a permanent dipole moment ($\mu \neq 0 \mathrm{D}$), if it does, then indicate the direction of the overall dipole, or if it doesn't have a permanent dipole moment ($\mu=0 \mathrm{D}$)
(30 points)
a. $\mathrm{CO}_{2} \quad \dot{O}=C=\underset{\cdots}{\dot{O}} \quad M=0$
b. $\mathrm{C}_{2} \mathrm{H}_{2}$

$$
H-C \equiv C-H \quad M=0
$$

c. $\mathrm{CH}_{2} \mathbf{N}_{2}$ (this one has formal charges, that must be shown)

4. Assign formal charges (if non-zero) to the appropriate atoms in the following molecules (or ions).
(Note that all lone pairs of electrons are shown in each structure)
(10 points)
a.

b.

5. Ammonia $\left(\mathrm{NH}_{3}\right)$ has a dipole moment (μ) of 1.42 D , whereas nitrogen trifluoride $\left(\mathrm{NF}_{3}\right)$ has a value of 0.234 D . Suggest a reason for the dramatic difference between these two otherwise similar molecules. (Hint: carefully consider the structure, polarity, and geometry)

6. Consider the structure shown below.
(20 points)

a. Label the hybridization for each of the atoms (except hydrogen).
b. What type of atomic orbitals) do the three lone pairs on the oxygen occupy? (are they all the same?)

$$
\text { two of them are in } s p^{2} \text { arbitols, one is in a } 2 p \text { orbital }
$$

c. Show the other resonance form using electron pushing.
(major form is on the loft)
7. Cyanogen bromide, shown below, is a reagent used for cleaving proteins at specific locations and is useful for protein sequencing. For every bond in the molecule, indicate which type of bond it is (π or σ) and what atomic orbitals are used to form them (hybridized orbitals are considered atomic orbitals). Also, what type of orbital is the nitrogen lone pair of electrons in. (note: there are 4 unique bonds that need identifying).
(25 points)

