1. The natural product linalool is found in many fragrant plants and spices. It smells like citrus mixed with roses.

a. What is the molecular formula for linalool?

$$
\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}
$$

b. How many valence electrons does linalool have? Are they all shown in the structure above? If not, what's missing?

$=64$ voleurel electrass
2. Draw a molecule that has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}$. The structure must contain only the "common" functional groups discussed in Chapter 2 (it could have more than one!) and should be shown using bond-line structures with lone pairs of electrons clearly shown.

Also, name the functional groups shown in your structure.
(If you draw multiple structure, only one will be graded so just circle the single one you want graded!)

3. For the following molecules,
a. Draw bond-line drawings that show the expected geometry (use dashes and wedges where necessary). (Note that C. has three possible structures, just choose one and answer b. and c.)
b. In your structures, show all of the lone pairs of electrons.
c. Indicate whether the molecule has a permanent dipole moment ($\mu \neq 0 \mathrm{D}$), if it does, then indicate the direction of the overall dipole, or if it doesn't have a permanent dipole moment ($\mu=0 \mathrm{D}$) (15 points)

B. $\mathrm{CH}_{2} \mathrm{O}$

C. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$

$\mu=0$

$\mu \neq 0$
4. Assign formal charges (if non-zero) to the appropriate atoms in the following molecules (or ions). (Note that all lone pairs of electrons are shown in each structure)
(10 points)
a.

b.

5. Ammonia $\left(\mathrm{NH}_{3}\right)$ has a dipole moment (μ) of 1.42 D , whereas nitrogen trifluoride $\left(\mathrm{NF}_{3}\right)$ has a value of 0.234 D . Since the two compounds have eseentially the same structure, suggest a reason for the dramatic difference in their polarities. (Hint: carefully consider the structure, polarity, and geometry)
(10 points)

all band dipoles constrbbute
to overall dipole - in the
same direction - this
includes the love pair

N-F bonds dipoles
contribute in opposite duestion
contribute in apposite duection. plan ar)
6. Consider the structure shown below.

a. Label the hybridization for each of the atoms (except hydrogen).
b. What type of atomic orbitals) do both lone pairs on the oxygen occupy?

$$
\text { ore pair is in a } 2 p \text { orbital, the other is in an } 5 p^{2}
$$

c. Is there a resonance structure for this compound? If so, show it using electron pushing.

7. Cyanogen bromide, shown below, is a reagent used for cleaving proteins at specific locations and is useful for protein sequencing. For every bond in the molecule, indicate which type of bond it is (π or σ) and what atomic orbitals are used to form them (hybridized orbitals are considered atomic orbitals). Also, what type of orbital is the nitrogen lone pair of electrons in. (note: there are 4 unique bonds that need identifying).
(20 points)

$$
\begin{aligned}
& \because \ddot{B r}-C=N: \quad s_{p} \text { orbital } \\
& \sigma\left(c_{c_{p}+}+N_{s p}\right) \\
& \sigma\left(C_{p_{p}}+B_{r_{p}}\right) \\
& \pi\left(c_{2 p_{y}}+N_{2 p_{q}}\right) \\
& \pi\left(C_{2 p_{2}}+N_{2 p}\right)
\end{aligned}
$$

8. Imidazole is shown below. Indicate the hybridization for each of the nitrogen atoms and what type of orbital each of the lone pair of electrons is in.
(10 points)

9. Push electrons to show the other resonance form for the ion shown below. Circle the major resonance form and provide the reason for your choice.
(10 points)

mage because N in none
elecstomeg sting
10. Consider the three compounds below. Indicate which compound is the most acidic and which is the least acidic. Use ARIO to justify your answers (don't forget about the conj. bases)
(20 points)
a.

b.

c.

less stable than C.
Attorn effect for all three
11. Given the $\mathrm{p} K_{\mathrm{a}}$ of the acid and conjugate acid are 16 and 38 (which one is which?), indicate which side of the equilibrium is favored (i.e., right or left). Also, explain why the data indicate this - be clear about this. Calculate the equilibrium constant ($K_{\text {eq }}$) - show your calculation.
(15 points)
larger oka means weaker acid!

$$
\rho k_{a} 38
$$

Equalifriom always bars the weakest acid, so in this cause
the left side is favored.

$$
K e q=10^{4-38}=10^{-22}
$$

12. Trifluoromethanesulfonic acid (aka triflic acid) is one of the strongest known acids. Use ARIO to explain the difference in acidity between methanesulfonic acid and trifluoromethanesulfonic acid (don't forget about the conjugate base).

Aten q^{\prime}
Resonance effects in both conj, bases is same

-12
trifluoromethane sulfonic acid

δ
indiactive effect of the CF 3 group stabilizes the can. base, so the acid is swinger
13. Oxycodone is a "semi-synthetic" product derived from opium poppy extracts. It is a widely prescribed (and abused) narcotic pain killer that is the active ingredient in OxyContin ${ }^{\circledR}$. Circle and identify as many of the common functional groups as you can.

oxycodone

