Human Anatomy & Physiology

Eighth Edition

Elaine N. Marieb Katja Hoehn <u>Chapter</u> <u>26</u>

Fluid, Electrolyte & Acid-Base Balance

Body Water Content

- Infants: 73% or more water (low body fat, low bone mass)
- Adult males: ~60% water
- Adult females: ~50% water (higher fat content, less skeletal muscle mass)
- Water content declines to ~45% in old age

Fluid Compartments

- Total body water = 40 L
 - 1.Intracellular fluid (ICF) compartment: 2/3 or 25 L in cells
 - 2.Extracellular fluid (ECF) compartment: 1/3 or 15 L
 - Plasma: 3 L
 - Interstitial fluid (IF): 12 L in spaces between cells
 - Other ECF: lymph, CSF, humors of the eye, synovial fluid, serous fluid, and gastrointestinal secretions

	Total body water Volume = 40 L 60% body weight	Extracellular fluid (EC Volume = 15 L 20% body weight	F)
Intracellul Volume = 2 40% body		Interstitial fluid (IF) Volume = 12 L 80% of ECF	

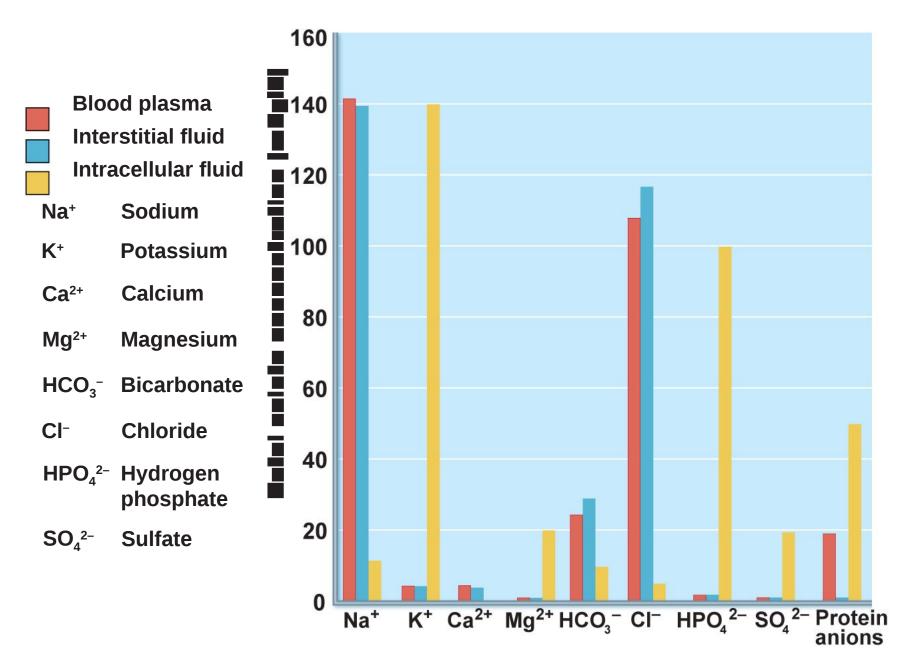
Composition of Body Fluids

- Water: the universal solvent
- Solutes: nonelectrolytes and electrolytes
 - –Nonelectrolytes: most are organic
 - Do not dissociate in water: e.g., glucose, lipids, creatinine, and urea

Composition of Body Fluids

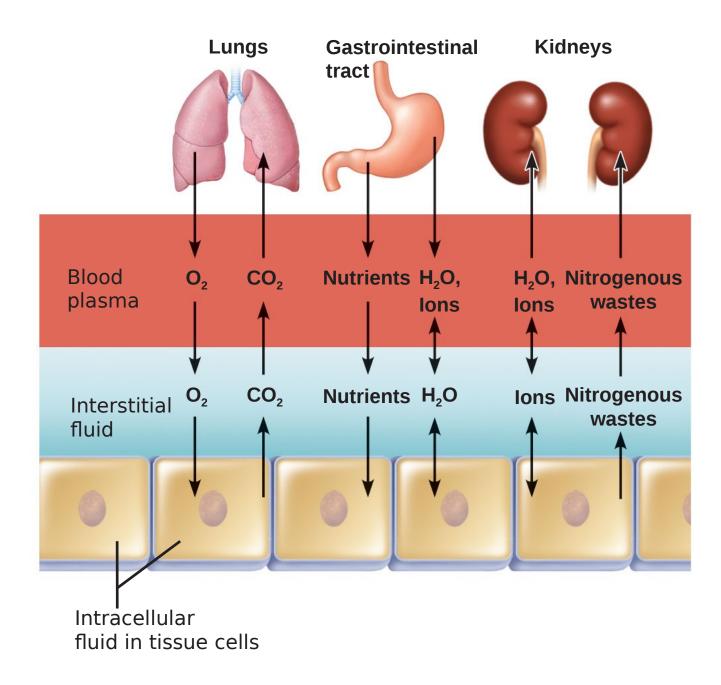
- Electrolytes
 - Dissociate into ions in water; e.g., inorganic salts, all acids and bases, and some proteins
 - -The most abundant solutes
 - Have greater osmotic power than nonelectrolytes, so they contribute to fluid shifts
 - Determine the chemical and physical reactions of fluids

Extracellular and Intracellular Fluids

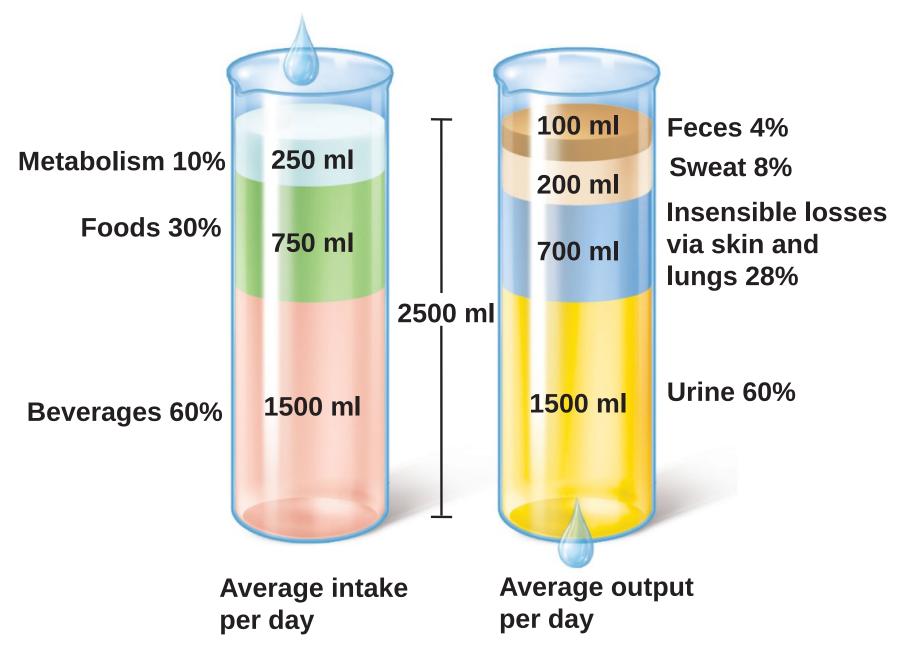

- Each fluid compartment has a distinctive pattern of electrolytes
- ECF
 - All similar, except higher protein content of plasma
 - Major cation: Na+
 - Major anion: Cl-

Extracellular and Intracellular Fluids

- ICF:
 - Low Na⁺ and Cl⁻
 - –Major cation: K⁺
 - –Major anion HPO₄²⁻


Extracellular and Intracellular Fluids

- Proteins, phospholipids, cholesterol, and neutral fats make up the bulk of dissolved solutes
 - -90% in plasma
 - -60% in IF
 - -97% in ICF


Fluid Movement Among Compartments

- Regulated by osmotic and hydrostatic pressures
- Water moves freely by osmosis; osmolalities of all body fluids are almost always equal
- Two-way osmotic flow is substantial
- Ion fluxes require active transport or channels
- Change in solute concentration of any compartment leads to net water flow

Water Balance and ECF Osmolality

- Water intake = water output = 2500 ml/day
- Water intake: beverages, food, and metabolic water
- Water output: urine, insensible water loss (skin and lungs), perspiration, and feces

Regulation of Water Intake

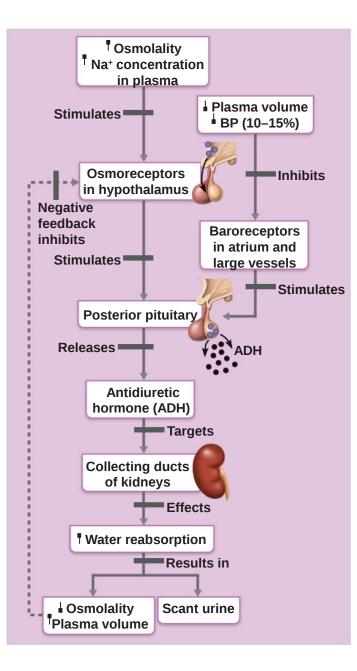
- Thirst mechanism is the driving force for water intake
- The hypothalamic thirst center osmoreceptors are stimulated by
 - $-\downarrow$ Plasma osmolality of 2–3%
 - -Angiotensin II or baroreceptor input
 - -Dry mouth
 - –Substantial decrease in blood volume or pressure

Regulation of Water Intake

- Drinking water creates inhibition of the thirst center
- Inhibitory feedback signals include –Relief of dry mouth
 - Activation of stomach and intestinal stretch receptors

(*Minor stimulus)

Regulation of Water Output


- Obligatory water losses
 - Insensible water loss: from lungs and skin
 Feces
 - –Minimum daily sensible water loss of 500 ml in urine to excrete wastes
- Body water and Na⁺ content are regulated in tandem by mechanisms that maintain cardiovascular function and blood pressure

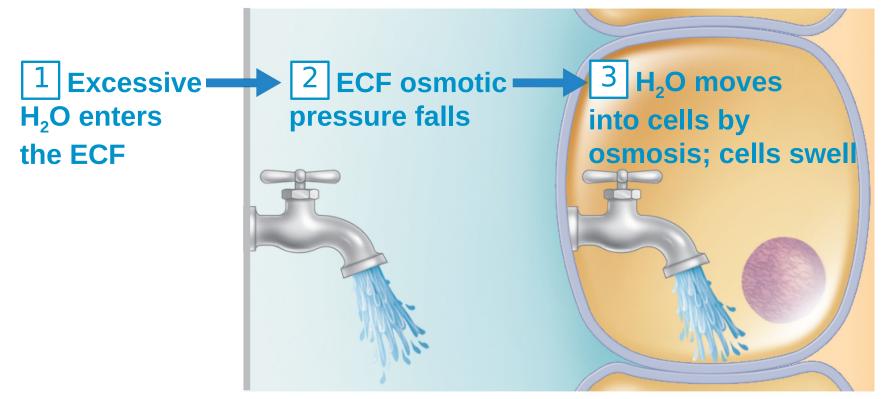
Regulation of Water Output: Influence of ADH

- Water reabsorption in collecting ducts is proportional to ADH release
- \downarrow ADH \rightarrow dilute urine and \downarrow volume of body fluids
- \uparrow ADH \rightarrow concentrated urine

Regulation of Water Output: Influence of ADH

- Hypothalamic osmoreceptors trigger or inhibit ADH release
- Other factors may trigger ADH release via large changes in blood volume or pressure, e.g., fever, sweating, vomiting, or diarrhea; blood loss; and traumatic burns

Disorders of Water Balance: Dehydration


- Negative fluid balance (net water loss)
 - -ECF water loss due to: hemorrhage, severe burns, prolonged vomiting or diarrhea, profuse sweating, water deprivation, diuretic abuse
 - –Signs and symptoms: thirst, dry flushed skin, oliguria
 - May lead to weight loss, fever, mental confusion, hypovolemic shock, and loss of electrolytes

(a) Mechanism of dehydration

Disorders of Water Balance: Hypotonic Hydration

- Cellular overhydration, or water intoxication
- Occurs with renal insufficiency or rapid excess water ingestion
- ECF is diluted → hyponatremia → net osmosis into tissue cells → swelling of cells → severe metabolic disturbances (nausea, vomiting, muscular cramping, cerebral edema) → possible death

(b) Mechanism of hypotonic hydration

Disorders of Water Balance: Edema

- Atypical accumulation of IF fluid \rightarrow tissue swelling
- Due to anything that increases flow of fluid out of the blood or hinders its return
 - −↑ Blood pressure

 - Incompetent venous valves, localized blood vessel blockage, impaired lymphatic system
 - Congestive heart failure, hypertension, ↑
 blood volume

Edema

- Hindered fluid return occurs with an imbalance in colloid osmotic pressures, e.g., hypoproteinemia (↓ plasma proteins)
 - Fluids fail to return at the venous ends of capillary beds
 - -Results from protein malnutrition, liver disease, or glomerulonephritis

Edema

- Blocked (or surgically removed) lymph vessels
 - -Cause leaked proteins to accumulate in IF

 - Results in low blood pressure and severely impaired circulation

Electrolyte Balance

- Electrolytes are salts, acids, and bases
- Electrolyte balance usually refers only to salt balance
- Salts enter the body by ingestion and are lost via perspiration, feces, and urine

Electrolyte Balance

- Importance of salts

 Controlling fluid movements
 Cellular Excitability
 Secretory activity
 - -Membrane permeability

Central Role of Sodium

- Most abundant cation in the ECF
- Sodium salts in the ECF contribute 280 mOsm of the total 300 mOsm ECF solute concentration
- Na⁺ leaks into cells and is pumped out against its electrochemical gradient
- Na⁺ content may change but ECF Na⁺ concentration remains stable due to osmosis

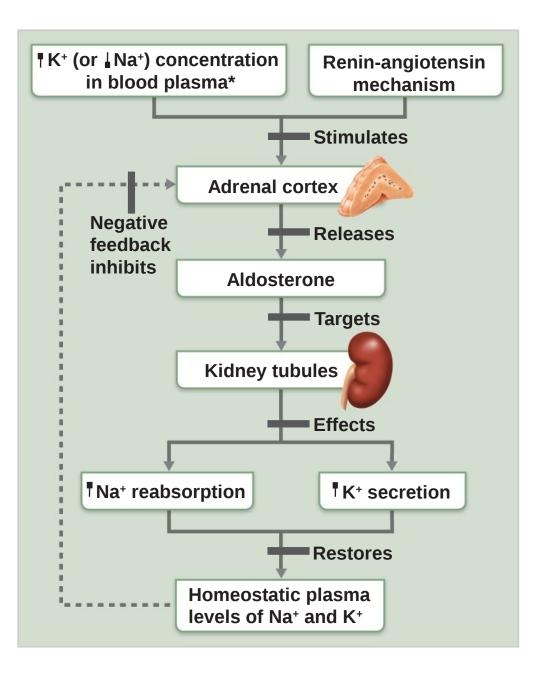
Central Role of Sodium

- Changes in plasma sodium levels affect
 - –Plasma volume, blood pressure
 - -ICF and IF volumes
- Renal acid-base control mechanisms are coupled to sodium ion transport

Regulation of Sodium Balance

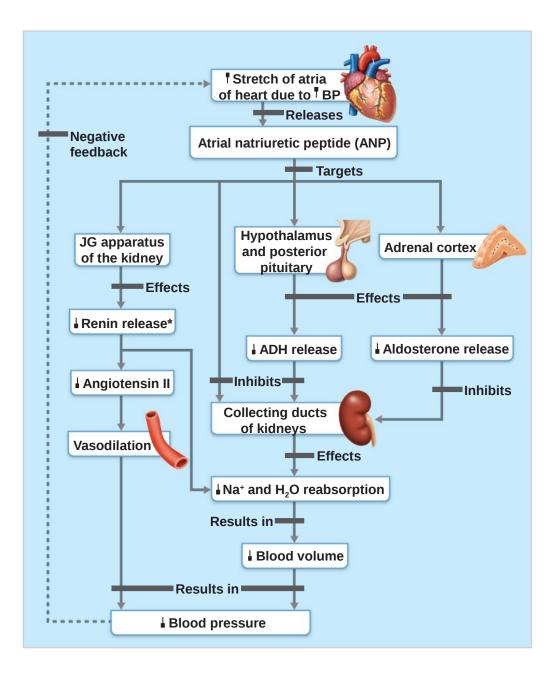
- No receptors are known that monitor Na⁺ levels in body fluids
- Na⁺-water balance is linked to blood pressure and blood volume control mechanisms

Regulation of Sodium Balance: Aldosterone


- Na+ reabsorption
 - -65% is reabsorbed in the proximal tubules
 -25% is reclaimed in the loops of Henle
- Aldosterone \rightarrow active reabsorption of remaining Na+
- Water follows Na+ if ADH is present

Regulation of Sodium Balance: Aldosterone

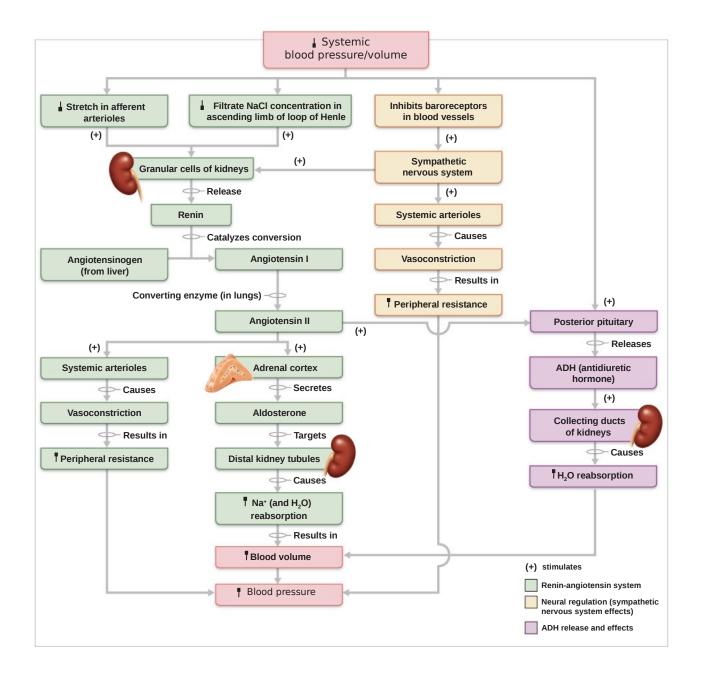
- Renin-angiotensin mechanism is the main trigger for aldosterone release
 - –Granular cells of JGA secrete renin in response to
 - Sympathetic nervous system stimulation
 - \downarrow Filtrate osmolality
 - \downarrow Stretch (due to \downarrow blood pressure)


Regulation of Sodium Balance: Aldosterone

- Renin catalyzes the production of angiotensin II, which prompts aldosterone release from the adrenal cortex
- Aldosterone release is also triggered by elevated K⁺ levels in the ECF
- Aldosterone brings about its effects slowly (hours to days)

Regulation of Sodium Balance: ANP

- Released by atrial cells in response to stretch ([↑] blood pressure)
- Effects
- Decreases blood pressure and blood volume:
 - $-\downarrow$ ADH, renin and aldosterone production
 - −↑ Excretion of Na⁺ and water
 - Promotes vasodilation directly and also by decreasing production of angiotensin II



Influence of Other Hormones

- Estrogens:
 NaCl reabsorption (like aldosterone)
 - \rightarrow H₂O retention during menstrual cycles and pregnancy
- Progesterone: \downarrow Na⁺ reabsorption (blocks aldosterone) –Promotes Na⁺ and H₂O loss
- Glucocorticoids:
 [↑] Na⁺ reabsorption
 and promote edema

Cardiovascular System Baroreceptors

- Baroreceptors alert the brain of increases in blood volume and pressure
 - -Sympathetic nervous system impulses to the kidneys decline
 - -Afferent arterioles dilate
 - -GFR increases
 - –Na⁺ and water output increase

- Importance of potassium:
 - Affects resting membrane potential in neurons and muscle cells (especially cardiac muscle)
 - \uparrow ECF [K⁺] $\rightarrow \downarrow$ RMP \rightarrow depolarization & inactivation of Na⁺ channels.
 - \downarrow ECF [K⁺] \rightarrow hyperpolarization and nonresponsiveness

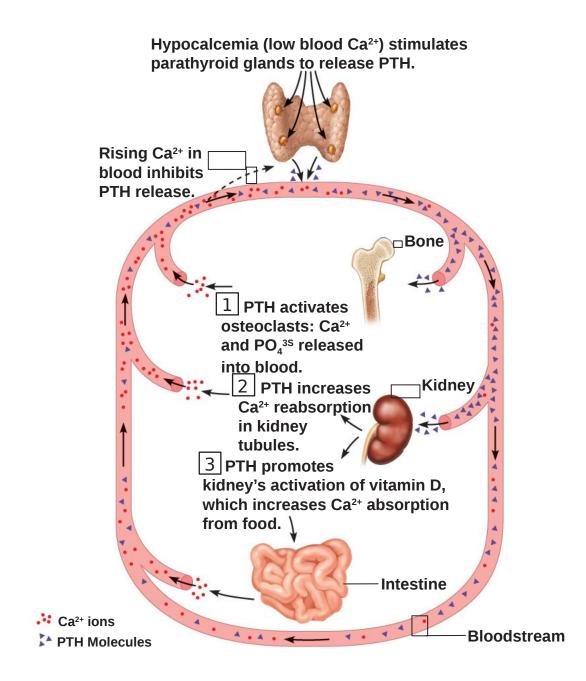
- H⁺ shift in and out of cells
 - Leads to corresponding shifts in K⁺ in the opposite direction to maintain cation balance
 - -Interferes with activity of excitable cells

- K⁺ balance is controlled in the cortical collecting ducts by changing the amount of potassium secreted into filtrate
- High K⁺ content of ECF favors principal cell secretion of K⁺
- When K⁺ levels are low, duct cells reabsorb some K⁺ left in the filtrate

- Influence of aldosterone

 Stimulates K⁺ secretion (and Na⁺ reabsorption) by duct cells
- Increased K⁺ in the adrenal cortex causes
 - Release of aldosterone
 - Potassium secretion

Regulation of Calcium


- Ca²⁺ in ECF is important for
 - -Neuromuscular excitability
 - -Blood clotting
 - -Cell membrane permeability
 - –Secretory activities (release of secretory granules)

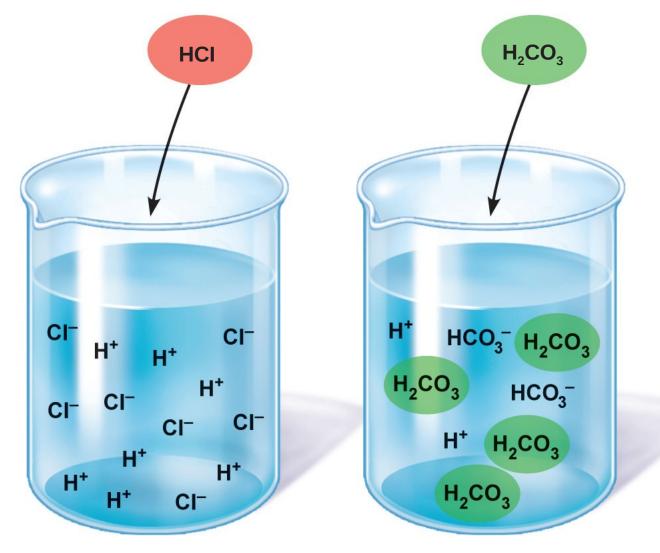
Regulation of Calcium

- Hypocalcemia $\rightarrow \uparrow$ excitability and muscle tetany
- Hypercalcemia \rightarrow Inhibits neurons and muscle cells, may cause heart arrhythmias
- Calcium balance is controlled by parathyroid hormone (PTH) and calcitonin

Influence of PTH

- Bones are the largest reservoir for Ca²⁺ and phosphates
- PTH promotes increase in plasma calcium levels by targeting bones, kidneys, and small intestine (indirectly through vitamin D)
- Calcium reabsorption and phosphate excretion go hand in hand

Influence of PTH


- Normally 75% of filtered phosphates are actively reabsorbed in the PCT
- PTH inhibits this reabsorption.
 - Prevents crystals of calcium phosphate from forming in the kidneys and blood.

- pH affects all functional proteins and biochemical reactions
- Normal pH of body fluids –Arterial blood: pH 7.4
 - –Venous blood and IF fluid: pH 7.35 –ICF: pH 7.0
- Alkalosis or alkalemia: arterial blood pH >7.45
- Acidosis or acidemia: arterial pH < 7.35

- Most H⁺ is produced by metabolism
 - –Phosphoric acid from breakdown of phosphorus-containing proteins in ECF
 - -Lactic acid from anaerobic respiration of glucose
 - –Fatty acids and ketone bodies from fat metabolism
 - $-H^+$ liberated when CO₂ is converted to HCO₃⁻ in blood

- Concentration of hydrogen ions is regulated sequentially by
 - –Chemical buffer systems: rapid; first line of defense
 - Brain stem respiratory centers: act within 1–3 min
 - Renal mechanisms: most potent, but require hours to days to effect pH changes

- Strong acids dissociate completely in water; can dramatically affect pH
- Weak acids dissociate partially in water; are efficient at preventing pH changes
- Strong bases dissociate easily in water; quickly tie up H⁺
- Weak bases accept H⁺ more slowly

- (a) A strong acid such as HCI dissociates completely into its ions.
- (b) A weak acid such as H_2CO_3 does *not* dissociate completely.

Chemical Buffer Systems

- Chemical buffer: system of one or more compounds that act to resist pH changes when strong acid or base is added
 - 1.Bicarbonate buffer system
 - 2.Phosphate buffer system
 - 3.Protein buffer system

Bicarbonate Buffer System

- Mixture of H_2CO_3 (weak acid) and salts of HCO_3^- (e.g., NaHCO₃, a weak base)
- Buffers ICF and ECF
- The only important ECF buffer

Bicarbonate Buffer System

If strong acid is added: -HCO₃⁻ ties up H⁺ and forms H₂CO₃
HCl + NaHCO₃ → H₂CO₃ + NaCl
-pH decreases only slightly, unless all

available HCO_{3}^{-} (alkaline reserve) is used

up

–HCO₃⁻ concentration is closely regulated by the kidneys

Bicarbonate Buffer System

- If strong base is added
 - –It causes H_2CO_3 to dissociate and donate H^+
 - -H⁺ ties up the base (e.g. OH⁻)
 - NaOH + $H_2CO_3 \rightarrow NaHCO_3 + H_2O$
 - -pH rises only slightly
 - $-H_2CO_3$ supply is almost limitless (from CO_2 released by respiration) and is subject to respiratory controls

Phosphate Buffer System

- Action is nearly identical to the bicarbonate buffer
- Components are sodium salts of: –Dihydrogen phosphate (H₂PO₄-), a weak acid
 - –Monohydrogen phosphate (HPO₄²⁻), a weak base
- Effective buffer in urine and ICF, where phosphate concentrations are high

Protein Buffer System

- Intracellular proteins are the most plentiful and powerful buffers; plasma proteins are also important
- Protein molecules are amphoteric (can function as both a weak acid and a weak base)
 - When pH rises, organic acid or carboxyl (COOH) groups release H⁺
 When pH falls, NH₂ groups bind H⁺

Physiological Buffer Systems

- Respiratory and renal systems
 - Act more slowly than chemical buffer systems
 - Have more capacity than chemical buffer systems

Respiratory Regulation of H⁺

- Respiratory system eliminates CO₂
- A reversible equilibrium exists in the blood:
 - $-CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- During CO_2 unloading the reaction shifts to the left (and H⁺ is incorporated into H₂O)
- During CO₂ loading the reaction shifts to the right (and H⁺ is buffered by proteins)

Respiratory Regulation of H⁺

- Hypercapnia (elevated CO₂) activates medullary chemoreceptors
- Rising plasma H⁺ activates peripheral chemoreceptors
 - –Increases ventilation rate
 - –More CO₂ is removed from the blood
 - –H⁺ concentration is reduced

Respiratory Regulation of H+

- Alkalosis depresses the respiratory center
 - -Respiratory rate and depth decrease
 - –H⁺ concentration increases
- Respiratory system impairment causes acid-base imbalances
 - -Hypoventilation \rightarrow respiratory acidosis
 - –Hyperventilation \rightarrow respiratory alkalosis

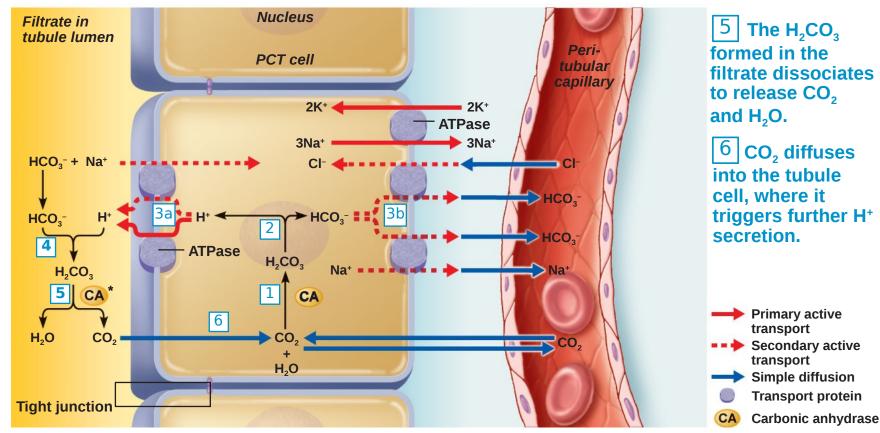
- Chemical buffers cannot eliminate excess acids or bases from the body –Lungs eliminate volatile carbonic acid by eliminating CO₂
 - -Kidneys eliminate other fixed metabolic acids (phosphoric, uric, and lactic acids and ketones) and prevent metabolic acidosis

Renal Mechanisms of Acid-Base Balance

- Most important renal mechanisms
 - -Conserving (reabsorbing) or generating new HCO₃⁻
 - -Excreting HCO₃-
- \bullet Generating or reabsorbing one HCO_3^- is the same as losing one H^+
- Excreting one HCO_3^- is the same as gaining one H⁺

Renal Mechanisms of Acid-Base Balance

- Renal regulation of acid-base balance depends on secretion of H⁺
- H⁺ secretion occurs in the PCT and in collecting duct:
 - The H⁺ comes from H₂CO₃ produced in reactions catalyzed by carbonic anhydrase inside the cells
 See Steps 1 and 2 of the following figure


1 CO_2 combines with water within the tubule cell, forming H_2CO_3 .

2 H_2CO_3 is quickly split, forming H⁺ and bicarbonate ion (HCO₃⁻).

3a H⁺ is secreted into the filtrate.

3b For each H⁺ secreted, a HCO₃⁻ enters the peritubular capillary blood either via symport with Na⁺ or via antiport with Cl⁻.

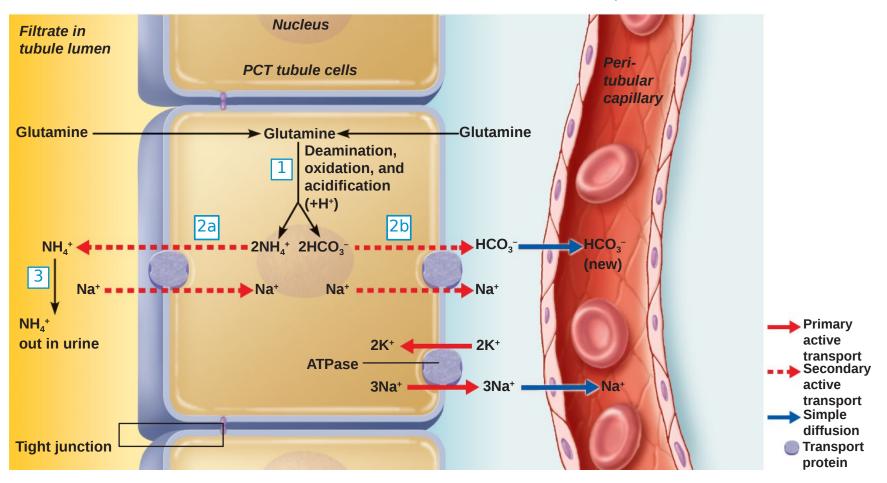
4 Secreted H⁺ combines with HCO_3^- in the filtrate, forming carbonic acid (H_2CO_3). HCO_3^- disappears from the filtrate at the same rate that HCO_3^- (formed within the tubule cell) enters the peritubular capillary blood.

Excretion of Buffered H⁺

- Dietary H⁺ must be balanced by generating new HCO₃⁻
- Most filtered HCO_3^- is used up before filtrate reaches the collecting duct

Excretion of Buffered H⁺

 Collecting duct cells actively secrete H⁺ into urine, which is buffered by phosphates and excreted


Ammonium Ion Excretion

- Ammonium is an acid.
- Involves metabolism of glutamine in PCT cells
- Each glutamine produces 2 NH_4^+ and 2 "new" HCO_3^-
- HCO_3^- moves to the blood and NH_4^+ is excreted in urine

1 PCT cells metabolize glutamine to NH_4^+ and HCO_3^- .

2a This weak acid NH₄⁺ (ammonium) is
 secreted into the filtrate, taking the
 place of H⁺ on a Na⁺- H⁺ antiport carrier.

^{2b} For each NH₄⁺ secreted, a
 bicarbonate ion (HCO₃⁻) enters the
 peritubular capillary blood via a
 symport carrier.
 ³ The NH₄⁺ is excreted in the urine.

Bicarbonate Ion Secretion

- When the body is in alkalosis, collecting duct cells
 –Secrete HCO₃-
 - -Reclaim H⁺ and acidify the blood

Bicarbonate Ion Secretion

- Mechanism is the opposite of the bicarbonate ion reabsorption process by type A intercalated cells
- Even during alkalosis, the nephrons and collecting ducts excrete fewer HCO_3^- than they conserve

Abnormalities of Acid-Base Balance

- Respiratory acidosis and alkalosis
- Metabolic acidosis and alkalosis

Respiratory Acidosis and Alkalosis

• The most important indicator of adequacy of respiratory function is $\mathrm{P}_{\mathrm{CO}_2}$ level

(normally 35–45 mm Hg)

- $-P_{\text{CO}_2}$ above 45 mm Hg \rightarrow respiratory acidosis
 - Most common cause of acid-base imbalances
 - Due to decrease in ventilation or gas exchange
 - Characterized by falling blood pH and rising P_{CO_2}

Respiratory Acidosis and Alkalosis

- ${\scriptstyle \bullet}\, P_{\text{co}_2}$ below 35 mm Hg \rightarrow respiratory alkalosis
 - A common result of hyperventilation due to stress or pain

Metabolic Acidosis and Alkalosis

- Any pH imbalance not caused by abnormal blood CO₂ levels
- Indicated by abnormal HCO_3^- levels despite normal ventilation and gas exchange.

Metabolic Acidosis and Alkalosis

- Causes of metabolic acidosis
 - –Ingestion of too much alcohol (\rightarrow acetic acid)
 - -Excessive loss of HCO₃- (e.g., persistent diarrhea)
 - Accumulation of lactic acid, shock, ketosis in diabetic crisis, starvation, and kidney failure

Metabolic Acidosis and Alkalosis

- Metabolic alkalosis is much less common than metabolic acidosis –Indicated by rising blood pH and HCO₃⁻
 - -Caused by vomiting of the acid contents of the stomach or by intake of excess base (e.g., antacids)

Effects of Acidosis and Alkalosis

- Blood pH below 7 \rightarrow depression of CNS \rightarrow coma \rightarrow death
- Blood pH above 7.8 → excitation of nervous system → muscle tetany, extreme nervousness, convulsions, respiratory arrest

Respiratory and Renal Compensations

- If acid-base imbalance is due to malfunction of a physiological buffer system, the other one compensates
 - Respiratory system attempts to correct metabolic acid-base imbalances
 - Kidneys attempt to correct respiratory acid-base imbalances

Respiratory Compensation

- In metabolic acidosis
 - High H⁺ levels stimulate the respiratory centers
 - -Rate and depth of breathing are elevated -Blood pH is below 7.35 and HCO₃⁻ level is low
 - $-As CO_2$ is eliminated by the respiratory system, P_{CO_2} falls below normal

Respiratory Compensation

 Respiratory compensation for metabolic alkalosis is revealed by: –Slow, shallow breathing, allowing CO₂ accumulation in the blood –High pH (over 7.45) and elevated HCO₃levels

Renal Compensation

- Hypoventilation causes elevated P_{CO_2}
- (respiratory acidosis)

 Renal compensation is indicated by high HCO₃⁻ levels
- Respiratory alkalosis exhibits low P_{CO_2}
 - and high pH
 - -Renal compensation is indicated by decreasing HCO₃⁻ levels