

Ch18: Amino Acids and Proteins

Protein Functions

TABLE 18.2 Classification of Proteins by Function			
Туре	Function	Example	
Enzymes	Catalyze biochemical reactions	<i>Amylase</i> —begins digestion of carbohydrates by hydrolysis	
Hormones	Regulate body functions by carrying messages to receptors	functions by Insulin—facilitates use of glucose for energy generation	
Storage proteins	Make essential substances available when needed	<i>Myoglobin</i> —stores oxygen in muscles	
Transport proteins	Carry substances through body Serum albumin—carries fatty fluids		
Structural proteins	Provide mechanical shape and support	Collagen—provides structure to tendons and cartilage	
Protective proteins	Defend the body against foreign matter	Immunoglobulin—aids in destruc- tion of invading bacteria	
Contractile proteins	Do mechanical work	<i>Myosin and actin</i> —govern muscle movement	

Amino Acids: Neutral Nonpolar Side Chains

Methionine (Met) Tryptophan (Trp) Phenylalanine (Phe) Proline (Pro)

Amino Acids: Neutral Polar Side Chains

Amino Acids: Ionizable Side Chains

Amino Acids: Neutral Nonpolar Side Chains

Amino Acids: Neutral Polar Side Chains

Amino Acids: Ionizable Side Chains

Handedness (Chirality)

Hand is not superimposable on its mirror image → CHIRAL

Chair is superimposable on its mirror image → ACHIRAL

Chirality

Isomer Types

Do the compounds have same molecular formula?

Enantiomers of Carvone

Case of Thalidomide

1957- Sold as sedative, nausea-reliever for pregnant women. Racemic mix resulted in infants born with limb deformation

Levels of Protein Structure

- 1. Primary
- 2. Secondary
- 3. Tertiary
- 4. Quaternary

Protein structure and function are intimately linked!

Primary structure: the sequence of the amino acids (residues) in the chain.

 Read sequence from <u>amino end</u> → <u>carboxyl</u> <u>end</u>.

Oxytocin: Hormone that triggers contraction of uterus and milk secretion

cys-tyr-<mark>ile</mark>-gin-asn-cys-pro-<mark>leu</mark>-gly

Vasopressin: Hormone that raises blood pressure and regulates kidney function

cys-tyr-<mark>phe</mark>-gin-asn-cys-pro-<mark>arg</mark>-gly

Sickle Cell Anemia

Result of a single Glu \rightarrow Val mutation in hemoglobin

© 2013 Pearson Education, Inc.

Higher-Level Structures in Proteins

- Secondary, Tertiary, and Quaternary structures have to do with how peptides "fold" into 3dimensional structure.
- Protein chains fold into very specific 3D structures that are finely tuned to their functions.

Interactions that Stabilize 3D Protein Structure

<u>Noncovalent</u>

- Hydrogen bonding
- Ionic interactions
- Hydrophobic interactions

Covalent

• Disulfide bonds

Hydrogen Bonding

Along backbone

Between side chains

Ionic Interactions (salt bridge)

Between ionized acidic and basic side chains

Hydrophobic Interactions

Between nonpolar side chains

Disulfide Bond (S-S bond)

Disulfide Bond: <u>Covalent</u> linkage between two cysteine side chains

Secondary Structure

Secondary structure: regular 3D arrangement of polypeptide backbone held together by hydrogen bonding between backbone atoms, plus loops or coils

Tertiary Structure of Proteins

 Tertiary structure: the overall 3-dimensional shape that results from folding of the protein; mainly dependent on side chain interactions, often far apart on polypeptide chain

Ribonuclease

Tertiary Structure

Myoglobin (a conjugated protein)

Simple vs. Conjugated Proteins

- Simple proteins: Contain only amino acids
 - Eg. Ribonuclease
- Conjugated proteins: Have non-amino acid component(s)
 - Eg. myoglobin

Examples of Conjugated Proteins

TABLE 18.5 Some Examples of Conjugated Proteins

Class of Protein	Nonprotein Part	Examples
Glycoproteins	Carbohydrates	Glycoproteins in cell membranes (Section 21.9)
Lipoproteins	Lipids	High- and low-density lipoproteins that transport cholesterol and other lipids through the body (Section 24.2)
Metalloproteins	Metal ions	The enzyme cytochrome oxidase, necessary for biological energy production, and many other enzymes
Phosphoproteins	Phosphate groups	Milk casein, which provides essential nutrients to infants
Hemoproteins	Heme	Hemoglobin (transports oxygen) and myoglobin (stores oxygen)
Nucleoproteins	RNA (ribonucleic acid)	Found in cell ribosomes, where they take part in protein synthesis

© 2013 Pearson Education, Inc.

Quaternary Structure

 Quaternary structure: two or more folded protein chains (subunits) held together by noncovalent interactions

Hemoglobin: O₂ carrier in red blood cells

Broad Categories of Protein Shapes

 Globular – roughly spherical; "worker" molecules with many different functions; typically water-soluble

 Fibrous – tough, water-insoluble, composed of fibers and sheets; give structural integrity and strength; main components of muscle, hair, cartilage, etc.

Structures of Globular Proteins

Protein structure is optimized for protein function:

- Solubility (polar and nonpolar side chains)
- Binding sites

Structures of Fibrous Proteins

Protofilament (pair of coiled coils)

Collagen

- -Connective tissues like cartilage, ligament, tendons, skin
- -Triple helix cable

Keratin

- -Hair, horn, nail
- Helix of helices

Silk -Stacked layers of pleated sheets

Levels of Protein Structure

Primary Secondary Tertiary Quaternary

Example Problem: Identify level of structure

Q: Identify as secondary, tertiary, or quaternary structure.

1. The protein α -hemolysin is made of 7 subunits associated together.

2. Polypeptide backbone hydrogen-bond to make a β-sheet.

3. In the protein albumin, α -helices pack together with all the nonpolar residues in the interior.

Protein Hydrolysis

Protein Denaturation

- Denaturation: loss of secondary, tertiary, and quaternary protein structure (protein "unfolding")
 - Primary structure is intact.
 - Protein function lost.

Protein Denaturing Agents

- Heat—Disrupts side-chain interactions (eg. frying egg, cooking collagen into gelatin)
- Mechanical agitation—(eg. beating egg whites)
- **Detergents**—Disrupt hydrophobic interactions.
- Organic compounds—Polar solvents interfere with hydrogen bonding; nonpolar solvents disrupt hydrophobic interactions.
- **pH change**—Disrupt salt bridges
- Inorganic salts—High concentrations can disturb salt bridges.

Most denaturation is irreversible.