Handout: Organic Chemistry Reactions

Reactions Organized by Compound Families

<u>Alkanes</u>

1. Combustion

2. Halogenation

<u>Alkenes and Alkynes</u> 1. Additions: hydrogenation, halogenation, hydrohalogenation, hydration

2. Polymerization

<u>Aromatic Compounds</u> Substitutions: nitration, halogenation, sulfonation

<u>Alcohols</u> 1. Elimination: dehydration 2. Oxidations

<u>Thiols</u> Oxidation

<u>Amines</u> Acid-Base reactions

<u>Aldehydes and Ketones</u> 1. Addition: Acetal/hemiacetal formation by alcohol addition (Reverse rxn: Acetal hydrolysis with acid)

2. Oxidation and Reduction for aldehydes (*Ketones go through reduction only)

Carboxylic Acids

1. Substitutions: esterification, amidation

(Reverse rxns: ester hydrolysis with acid or base, amide hydrolysis with acid or base)

2. Acid-base reactions

<u>Phosphoric acid and Phosphates</u> Phosphoric acid: Esterification with alcohol Phosphates: Phosphorylation

Reactions Organized by Reaction Type

<u>Family</u>

Reaction

<u>Example</u>

1. ADDITION	
I. ADDITION	

Alkenes and alkynes	Hydrogenation	$ \begin{array}{c} H \\ H $
	Halogenation	$H_{H} = C_{H} + Cl_{2} (or Br_{2}) \longrightarrow H_{H} = C_{H} - C_{H} + C_{H}$
	Hydro- halogenation	$ \begin{array}{c} H \\ C = C \\ H \\ H \\ C \\$
	Hydration	$\begin{array}{c} H \\ H \\ H \\ H \\ \end{array} \begin{array}{c} C = C \\ H \\ \end{array} \begin{array}{c} H \\ H \\ CH_3 \end{array} + \begin{array}{c} H_2O \\ H \\ H \\ CH_3 \end{array} \begin{array}{c} H \\ H \\ H \\ H \\ H \\ CH_3 \end{array} \begin{array}{c} H \\ OH \\ H \\ CH \\ H \\ OH \\ H \\ CH_3 \end{array} \begin{array}{c} H \\ OH \\ H \\ OH \\ H \\ OH \\ H \\ OH \\ H \\ $
Aldehydes and ketones	Addition of alcohol to get hemiacetals or acetals	$\begin{array}{c} O \\ H \\ H_{3}C-C-H(R) + CH_{3}CH_{2}OH \\ \end{array} \xrightarrow{H^{+} \text{ catalyst}} H_{3}C-C-H(R) + CH_{3}CH_{2}OH \\ \xrightarrow{I} \\ O-CH_{2}CH_{3} \\ \end{array}$
		$ \begin{array}{c} O-CH_2CH_3 \\ H^+ \text{ catalyst} \\ H_3C-C-H(R) \\ O-CH_2CH_3 \\ I \\ O-CH_2CH_3 \\ acetal \end{array} $

2. SUBSTITUTION

Aromatic compounds	Nitration	+ HNO ₃ $\xrightarrow{\text{H}_2\text{SO}_4 \text{ catalyst}}$ $\overrightarrow{\text{NO}_2}$		
	Halogenation	+ Cl_2 (or Br_2) + Cl_2 (or Br_2)		
	Sulfonation	$+ SO_3 \xrightarrow{H_2SO_4 \text{ catalyst}} \qquad $		
Carboxylic acids	Esterification with alcohol	$\begin{array}{c} O \\ H_{3}C-C-OH + CH_{3}CH_{2}OH \xrightarrow{H^{+} \text{ catalyst}} H_{3}C-C-OCH_{2}CH_{3} + H_{2}O \end{array}$		
	Amidation with amine	$\begin{array}{c} O \\ \textbf{H} \\ \textbf{H}_{3}C-C-OH + CH_{3}NH_{2} \end{array} \xrightarrow{\text{heat}} \begin{array}{c} O \\ \textbf{H} \\ \textbf{H}_{3}C-C-NHCH_{3} + H_{2}O \end{array}$		
Phosphoric acid and Phosphates	Phosphoric acid: Esterification with alcohol	$\begin{array}{c} O & O \\ HO - P - OH + CH_3OH \longrightarrow HO - P - OCH_3 + H_2O \\ I \\ OH & OH \end{array}$		
	Phosphates: Phosphorylation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

3. ELIMINATION

Alcohols	Dehydration	H OH H ₃ C-C-C-CH ₃ H H	H_2SO_4 catalyst H_3	$_{3C}^{H}$ $c = c < _{H}^{CH_{3}}$	$H = H_3C - C - C = CH_2 + H_2O$ $H = H_1 + H_2O$ $H = H_2O$
				major	mmor
		Zaitsev's Rule a	pplies: More h	ighly substit	uted alkene is major
		product.			

4. OXIDATION/REDUCTION

Alcohols	Oxidation	$1^{\circ} \begin{array}{c} OH \\ I \\ I \\ H \end{array} \begin{array}{c} O \\ I \\ I \\ H \end{array} \begin{array}{c} O \\ I \\ R - C - H \end{array} \begin{array}{c} O \\ I \\ I \\ I \\ R - C - H \end{array} \begin{array}{c} O \\ I \\ R - C - OH \\ Carboxylic acid \end{array}$
		$2^{\circ} R - C - H \xrightarrow{[O]} R - C - R$ $R \xrightarrow{I} R \xrightarrow{I} Ketone$
		$3^{\circ} R \stackrel{OH}{-} I \stackrel{[O]}{\longrightarrow} No Rxn$
Thiols	Oxidation	$2 \text{ RSH} \xrightarrow{[O]} \text{R-S-S-R} \left(\text{Reverse rxn: R-S-S-R} \xrightarrow{[H]} 2 \text{ RSH} \right)$
Aldehydes	Oxidation	$\begin{array}{ccc} O & [O] & O \\ II & II \\ R-C-H & \longrightarrow & R-C-OH \\ aldehyde & carboxylic acid \end{array}$
	Reduction (also addition)	$ \begin{array}{c} O \\ R \\ H \\ R \\ - C \\ - H \end{array} \xrightarrow{[H]} O \\ R \\ - C \\ - H \\ H \\ H \end{array} $
Ketones	Reduction (also addition)	$ \begin{array}{c} O \\ H \\ R - C - CH_3 \end{array} \xrightarrow{[H]} R - C - CH_3 \\ H \\ H \end{array} $

5. ACID-BASE

Amines (Basic)	Rxn with water	$CH_3CH_2NH_2 + H_2O$ \longrightarrow $CH_3CH_2NH_3^+ + OH^-$
	Neutralization	$CH_3CH_2NH_2 + H_3O^+ \longrightarrow CH_3CH_2NH_3^+ + H_2O$
	with strong acid	$CH_3CH_2NH_2 + HCI \longrightarrow CH_3CH_2NH_3 + CI^-$
	to get ammonium	$\left(\begin{array}{c} \text{Reverse rxn: ammonium} \\ \text{CH}_{a}\text{CH}_{a}\text{CH}_{a}\text{CH}_{a}^{+}\text{CH}_{a}^{-} + \text{NaOH} \end{array} \right)$
	ion or salt	(ion or salt + base ongoing ing ing ing ing ing ing ing ing ing
Carboxylic	Rxn with water	0 0
acids		H ₃ C−C−OH + H ₂ O → H ₃ C−C−O ⁻ + H ₃ O ⁺
(Acidic)	Neutralization with strong base to get carboxylic acid salt	$H_3C - C - OH (aq) + NaOH (aq) \longrightarrow H_3C - C - O^- Na^+(aq) + H_2O$
Phenols	Neutralization	OH OH
(<u>very</u> weakly	with strong base	$+ \text{NaOH} \rightarrow 1 + H_2O$
acidic)	to get salt	

Other Reaction Types

<u>Family</u>

<u>Reaction</u>

<u>Example</u>

RADICAL REACTIONS

Alkanes	Combustion (Also oxidation/reduction reaction)	$CH_4(g) + 2O_2(g) \xrightarrow{\text{heat}} CO_2 + 2H_2O + Heat$
	Halogenation	$CH_{3}CH_{2}CH_{3} + Cl_{2} \xrightarrow{\text{light or heat}} HCl + CH_{3}CH_{2}CH_{2}CI + CH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl Cl Cl + CH_{3}CH_{2}CH_{2}CH_{3} + CHCH_{3}CHCH_{3} + CHCH_{2}CH_{3}$ $\xrightarrow{Cl} Cl Cl + CH_{3}CCH_{3} + CHCH_{2}CH_{3}$ $\xrightarrow{Cl} Cl Cl + CH_{3}CCH_{3} + CHCH_{2}CH_{3}$ $\xrightarrow{Cl} Cl Cl + CH_{3}CHCH_{3} + CHCH_{2}CH_{3}$ $\xrightarrow{Cl} Cl Cl + CHCH_{3}CHCH_{3} + CHCH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl Cl + CHCH_{3}CHCH_{3} + CHCHCH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl Cl + CHCH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl + CHCHCH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl + CHCHCH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl + CHCHCH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl + CHCHCH_{3}CHCH_{3}$ $\xrightarrow{Cl} Cl + CHCHCHCH_{3}$ $\xrightarrow{Cl} Cl + CHCHCHCHCH_{3}$ $\xrightarrow{Cl} Cl + CHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHC$
Alkenes	Polymerization	$CH_{3}CH = CH_{2} \xrightarrow{\text{initiator}} \begin{pmatrix} CH_{3} & CH_{3} \\ I & H_{2} \\ -C & CH_{3} \\ -C & -C \\ H & -C \\ -C & -C \\ H & -C \\ -C & -C \\ -C \\ -C \\ -C \\ -C \\ -C$

HYDROLYSIS

Esters	Acid hydrolysis to get	O O H ⁺ catalyst
(Reverse rxns of	carboxylic acid and	$R-C-O-CH_3 + H_2O \longrightarrow R-C-OH + CH_3OH$
carboxylic acid	alcohol	
esterification)	Saponification: Base	0 0
	hydrolysis to get	$R - C - O - CH_3 + NaOH (aq) \xrightarrow{\Pi_2 O} B - C - O^- Na^+ + CH_0 OH$
	carboxylic acid salt and	11 0 0 114 1 0.130.1
	alcohol	
Amides	Acid hydrolysis to get	O H ⁺ catalyst O
(Reverse rxns of	amine	$H_3C-C-OH + CH_3 + H_2O \longrightarrow H_3C-C-OH + CH_3NH_2$
carboxylic acid	Base hydrolysis to get	
amidation)	amine	$H_3C - C - N - CH_3 + NaOH (aq) \longrightarrow H_3C - C - OH + CH_3NH_2$
Acetals	Acid hydrolysis to get	H H ⁺ catalyst
(Reverse reaction	aldehydes of ketones	$H_3C - C - O - CH_2CH_3 + H_2O \longrightarrow H_3C - C - OH + 2 CH_3CH_2OH$
of acetal formation	(reverse of acetal	$O-CH_2CH_3$
from	formation)	
aldehydes/ketones)		

*Note that organic chemistry reactions can be classified in several different ways.