Alkanes

Family: Alkanes

- Alkanes: Hydrocarbons (compounds with only hydrogen and carbons) that contain only single bonds
- Simplest alkane is methane.
- Except in the case of methane, each C must be bound to another C.
- Can be open-chain or cyclic. If open-chain (general formula C_nH_{2n+2}), can be straight-chain or branched-chain.

Isomers

 Isomers: Compounds that have the same molecular formula but different arrangement of atoms in space

There are several different types of isomers.

Constitutional Isomers

Constitutional Isomers: same molecular formula, but different atom-atom connections

 <u>Completely different compounds</u>, with different structures, physical properties (melting pt, boiling pt)

Constitutional Isomers

Conformational Isomers

Conformational Isomers (Conformers): same molecular formula <u>and</u> same atom-atom connections, but different 3D geometries due to rotation about a bond

- Identical compound with same physical properties; can't be separated
- Most molecules in the sample have the least crowded, extended conformation.

Drawing Organic Structures

Different Types of Structural Formulas

1. Full

All atoms and bonds are shown.

2. Condensed

 C-C and C-H <u>bonds</u> are not shown (unless branched).

3. Line

Each C-C bond is represented as a line.

Every vertex and open end represents a C.

Cs and Hs are not shown. (Any atoms other than C or H must be shown.)

Chemical Nomenclature

- 1. IUPAC System (International Union of Pure and Applied Chemistry)
- 2. Common

IUPAC Nomenclature for Alkanes

Refer to Handout: Naming Organic Molecules.

- 1. Name parent+suffix: longest carbon chain + family suffix (-ane).
- 2. <u>Number carbons</u> in parent chain: Begin numbering from end that meets specified criteria (Begin at end nearer to branch point. Then give smallest #s possible to substituents).
- 3. Name prefix: substituent position #s and names (group repeated substituents together using di-, tri-, etc).
- 4. Write full name, listing substituents in alphabetical order (ignore di-, tetra- in alphabetizing).

Name Format: #-substituent-#-substituentparentsuffix

Names of Parent Alkanes

TABLE 12.2 Names of Straight-Chain Alkanes

Number of Carbons	Structure	Name
1	CH ₄	<i>Meth</i> ane
2	CH ₃ CH ₃	<i>Eth</i> ane
3	CH ₃ CH ₂ CH ₃	<i>Prop</i> ane
4	CH ₃ CH ₂ CH ₂ CH ₃	<i>But</i> ane
5	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	<i>Pent</i> ane
6	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	<i>Hex</i> ane
7	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	<i>Hept</i> ane
8	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	<i>Oct</i> ane
9	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	<i>Non</i> ane
10	CH ₃ CH ₂ CH ₃	Decane

© 2013 Pearson Education, Inc.

Names of Alkyl Substituents

- Substituent: An atom or group of atoms attached to a parent compound
- Alkyl substituent: An alkane-derived substituent (To name, change –ane to –yl).

^{*} The red bond shows the connection to the rest of the molecule.
© 2013 Pearson Education. Inc.

Ex Probs

Four Substitution Patterns of Carbon

Primary carbon (1°) has one other carbon attached.

© 2013 Pearson Education, Inc.

Secondary carbon (2°) has two other carbons attached.

Tertiary carbon (3°) has three other carbons attached.

Quaternary carbon (4°) has four other carbons attached.