Ch20/21: The Generation of Biochemical Energy

Metabolic Pathways

Catabolism and Anabolism

Overview of Catabolism

[Handout] Catabolism Flow Chart

Diagram of a Eukaryotic Cell

Mitochondrion

Free Energies of Hydrolysis

TABLE 20.1 Free Energies of Hydrolysis of Some Phosphates

) P — O [−] + H ₂ O ← → → ROH + - Function	Ο HO —P — O – O – Δ G (kcal/mol)	AG (kl/mal)
Compound Name	runction	AG (KCal/IIIOI)	ΔG (kJ/mol)
Phosphoenol pyruvate	Final intermediate in conversion of glucose to pyruvate (glycolysis)—Stage 2, Figure 20.5	-14.8	-61.9
1, 3-Bisphosphoglycerate	Another intermediate in glycolysis	-11.8	-49.4
Creatine phosphate	Energy storage in muscle cells	-10.3	-43.1
ATP (→ADP)	Principal energy carrier	-7.3	-30.5
Glucose 1-phosphate	First intermediate in breakdown of carbohydrates stored as starch or glycogen	-5.0	-20.9
Glucose 6-phosphate	First intermediate in glycolysis	-3.3	-13.8
Fructose 6-phosphate	Second intermediate in glycolysis	-3.3	-13.8

Nicotinamide Adenine Dinucleotide (NADH)

© 2013 Pearson Education, Inc.

(NADPH if –OH is replaced by –OPO $_3^{2-}$)

(Often written as NADH/H+)

Flavin Adenine Dinucleotide (FADH₂)

FAD

$$CH_3$$
 CH_3
 $H-N$ $N-\frac{2}{5}$

Reduced form

 $N-H$
 N

Acetyl-CoA

Coenzyme A

Citric Acid Cycle

Citric Acid Cycle, in more detail

Citric Acid Cycle, even more detail

[Handout] Citric Acid Cycle

Chemistry of Citric Acid Cycle

Electron Transport Chain and ATP Synthase

The Mobile Components of Electron Transport Chain

Coenzyme Q

$$CH_3O$$
 CH_3
 CH_3O
 CH_2CH
 $CH_2CH_2CH_3$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

© 2013 Pearson Education, Inc.

$$CH_3O$$
 CH_3
 CH_3O
 $CH_2CH = CCH_2)_nH$
 CH_3

Reduced coenzyme Q

Cytochrome C (with heme cofactor)

(a) A heme group

(b) A representative cytochr ome protein

Energy Diagram for Electron Transport Chain

