Chem 30B

Ch22: Carbohydrate Metabolism

Catabolism Overview

Digestion of Carbohydrates

Villi of Small Intestine

© 2013 Pearson Education, Inc.

[Handout] Catabolism Flow Chart

[Handout] Glycolysis

2-Phosphoglycerate

3-Phosphoglycerate

Glucose to Acetyl-CoA

@ 2013 Pearson Education, Inc.

[Handout] ATP Accounting for Glucose Catabolism

1. Glycolysis:

glucose + 2 NAD+ + 2 HOPO₃²⁻ + 2 ADP
$$\rightarrow$$
 2 pyruvate + 2 NADH + 2 ATP + 2 H₂O + 2 H⁺

2. Pyruvate Oxidation:

2 pyruvate + 2 NAD+ + 2 HSCoA
$$\rightarrow$$
 2 Acetyl-CoA + 2 CO₂ + 2 NADH + 2 H+

3. Citric Acid Cycle:

2 Acetyl-CoA + 6 NAD+ + 2 FAD + 2 ADP + 2 HOPO₃²⁻ + 4 H₂O
$$\Rightarrow$$
 2 HSCoA + 6 NADH + 6 H+ + 2 FADH₂ + 2 ATP + 4 CO₂

4. Electron Transport/Oxidative Phosphorylation:

Electrons from all the NADH and FADH₂ made in the previous steps are used to reduce O_2 to water: $O_2 + 4e^- + 4 H^+ \rightarrow 2 H_2O$

The released energy is used to make ATP:

3 ATP made/1 NADH 2 ATP made/1 FADH₂ (More accurate: 2.5 ATP/NADH, 1.5 ATP/ FADH₂)

B. Total ATP Count for Catabolism of a Glucose Molecule

- Glycolysis: 2 ATP + 6 ATP (from 2 NADH) = 8 ATP
- Pyruvate oxidation: 6 ATP (from 2 NADH) = 6 ATP
- Citric Acid Cycle: 2 ATP + 18 ATP (from 6 NADH) + 4 ATP (from 2 FADH₂) = 24 ATP

TOTAL: 38 ATP