Chem 30B Handout: Metabolism

Catabolism Flow Chart

Glucose and Fatty Acid Catabolism

I. Glucose Catabolism

A. Steps of Glucose Catabolism

1. Glycolysis:

glucose + 2 NAD+ + 2 HOPO₃²⁻ + 2 ADP
$$\rightarrow$$
 2 pyruvate + 2 NADH + 2 ATP + 2 H₂O + 2 H⁺

2. Pyruvate Oxidation:

2 pyruvate + 2 NAD+ + 2 HSCoA
$$\rightarrow$$
 2 Acetyl-CoA + 2 CO₂ + 2 NADH + 2 H+

3. Citric Acid Cycle:

4. Electron Transport/Oxidative Phosphorylation:

Electrons from all the NADH and FADH₂ made in the previous steps are used to reduce O_2 to water: $O_2 + 4e^- + 4 H^+ \rightarrow 2 H_2O$

The released energy is used to make ATP:

3 ATP made/1 NADH 2 ATP made/1 FADH₂

(More accurate: 2.5 ATP/NADH, 1.5 ATP/ FADH₂)

B. Total ATP Count for Catabolism of a Glucose Molecule

- Glycolysis: 2 ATP + 6 ATP (from 2 NADH) = 8 ATP
- Pyruvate oxidation: 6 ATP (from 2 NADH) = 6 ATP
- Citric Acid Cycle: 2 ATP + 18 ATP (from 6 NADH) + 4 ATP (from 2 FADH₂) = 24 ATP

TOTAL: 38 ATP

II. Fatty Acid Catabolism

A. Steps of Fatty Acid Catabolism

1. Activation of fatty acid:

$$\begin{array}{c} O \\ \parallel \\ R-C-O^- + HSCoA + ATP \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ R-C-SCoA + AMP \end{array} + \begin{array}{c} O \\ -O-P-O-P-O^- \\ \parallel \\ -O-P-O-P-O^- \end{array}$$

$$\begin{array}{c} O \\ \parallel \\ \parallel \\ O-O-P-O^- \end{array}$$

$$\begin{array}{c} O \\ \parallel \\ \parallel \\ O-O-P-O^- \end{array}$$

- 2. Trans-membrane transport of fatty acyl-CoA from cytosol into mitochondrial matrix
- 3. β -Oxidation of fatty acyl-CoA (Repeat for each 2-carbon unit EXCEPT for the last 2-carbon unit, since the last β -oxidation cleaves 4-carbon chain to give two acetyl-CoA molecules):

For each round of β -oxidation

Fatty acyl-CoA + FAD +
$$H_2O$$
 + NAD+ + HSCoA \Rightarrow Fatty acyl-CoA shorted by 2 carbons + FAD H_2 + NADH/ H^+ + Acetyl-CoA

4. Citric Acid Cycle:

Acetyl-CoA + 3 NAD+ + FAD + ADP + HOPO₃²⁻ + 2 H₂O
$$\rightarrow$$
 HSCoA + ATP + 2 CO₂ + 3 H+ +3 NADH + FADH₂

5. Electron Transport/Oxidative Phosphorylation: 3 ATP made/1 NADH, and 2 ATP made/1 FADH₂

B. Total ATP Count for Catabolism of a Fatty Acid Molecule

- **Activation**: -2 ATP [One-time loss for the whole fatty acid molecule]
- β-Oxidation:

2 ATP (per FADH₂) + 3 ATP (per NADH) = 5 ATP/
$$\beta$$
-oxidation round

$$\frac{5 \text{ ATP}}{1 \text{ }\beta\text{-oxidation } round}$$
 x No. of β -oxidation rounds = No. of ATP from all β -oxidation rounds

*Note: No. of
$$\beta$$
-oxidation rounds = $\frac{No.of\ carbon\ atoms\ in\ fatty\ acid}{2} - 1$

• Citric acid cycle:

No. of carbon atoms in fatty acid/2 = No. of acetyl-CoA

$$\frac{12 \, ATP}{1 \, acetyl-CoA}$$
 x No. of acetyl-CoA = No. of ATP from all acetyl-CoA

TOTAL: Net ATP from three steps above.

Three Metabolic Pathways

I. Glycolysis

II. β-Oxidation of Fatty Acid

III. Citric Acid Cycle

