Chem 30A

Ch 11. Gases

CH JJ eszez

Introduction

|Ufloqnct!OU

Gases, Liquids, and Solids

- Gas: widely spaced, rapid random motion, low density
- Liquid: closer together, randomly arranged
- Solid: Closely packed, fixed position, rigid, high density

Gases

- Have lower densities than liquid, solid.
- Easily compressed when placed under pressure.
- Assume shape and volume of their container.

Kinetic Molecular Theory

Explains why gases behave as they do

1. Particle Motion: Gas particles (atoms or molecules) are in constant, random motion.
2. Particle Volume: There is a lot of space between particles compared to the size of the particles, so the volume of each particle can be assumed to be negligible (point masses).
3. Particle Collisions: Gas particles do not attract or repel each other, so collisions are perfectly elastic.
4. Particle Energy: The average kinetic energy (energy of motion) of a collection of gas particles is directly proportional to the Kelvin temperature.

$$
K E_{\mathrm{avg}} \propto \mathrm{~T}(\text { in } K)
$$

Ideal Gas

- Ideal Gas: a gas that obeys all the assumptions of the kinetic-molecular theory
- Most gases display nearly ideal behavior under normal conditions.

Pressure

Pressure: the result of collisions of particles with the walls of the container

$$
\text { Pressure }=\frac{\text { force }}{\text { area }}=\frac{\mathrm{ma}}{\text { area }}
$$

On Earth, atmospheric gases exert a force on all surfaces.

Barometer

Barometer: A device to measure atmospheric pressure
(invented by Torricelli in 1643)

- At sea level and $0^{\circ} \mathrm{C}$, atmospheric pressure $=$ 760 mmHg

Standard Atmospheric Pressure and Pressure

Units
Standard atmospheric pressure: typical atmospheric pressure at sea level and $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
1 \mathrm{~atm} & =760 \mathrm{mmHg}=760 \text { Torr Memorize } \\
& =101,325 \mathrm{~Pa}\left(\text { SI unit: Pascal }=\text { Newton } / \mathrm{m}^{2}\right) \\
& =14.7 \mathrm{psi}
\end{aligned}
$$

Common Units of Pressure

TABLE 11.1 Common Units of Pressure

Unit
pascal (Pa)
atmosphere (atm)
millimeter of
mercury (mm Hg)
torr (torr)

Average Air
Pressure at
Sea Level
$101,325 \mathrm{~Pa}$
1 atm
760 mm Hg
(exact)
760 torr
(exact)
pounds per square 14.7 psi inch (psi)
inches of mercury $29.92 \mathrm{in} . \mathrm{Hg}$ (in. Hg)

Sea level: 14.7 psi
Mt. Everest summit: 4.7 psi

Gas Laws

cs2 Гsmə

Four Properties of Gas

Four properties completely describe the state of a gas (the condition of a gas at a given time):

- $P=$ pressure
- $\mathrm{V}=$ volume
- T = temperature
- $\mathrm{n}=$ number of moles

Gas Laws

1. Boyle's Law: $V \propto \frac{1}{P}$ (at fixed V, n)
2. Charles's Law: $V \propto T$ (at fixed P, n)
3. Avogadro's Law: $V \propto n$ (at fixed P, T)
4. Combined Gas Law : $\frac{P V}{T}=k$ (at fixed n)
5. Ideal Gas Law: $P V=n R T$

Boyle's Law: Pressure and Volume

" V and P are inversely related, at fixed n and T."

$V \propto \frac{1}{P}$

Boyle's Law: Pressure and Volume

(a)

Diver and Air Pressure

Pressure decreases \rightarrow Volume of air increases.

Useful Form of Boyle's Law

$$
\begin{aligned}
& \mathrm{V} \propto \frac{1}{\mathrm{P}} \quad(\text { at fixed } \mathrm{n}, \mathrm{~T}) \\
& \mathrm{V}=b \times \frac{1}{\mathrm{P}} \quad(\mathrm{~b}=\mathrm{a} \text { constant }) \\
& \mathrm{PV}=b
\end{aligned}
$$

Useful Form of Boyle's Law

$$
\mathrm{PV}=b
$$

(at fixed n, T)

Gas changes from state $1 \rightarrow$ state 2 , at fixed n and T .

- $P_{1} V_{1}=b$ for gas in state 1
- $P_{2} V_{2}=b$ for gas in state 2

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \begin{gathered}
\text { Useful form of Boyle's Law for } \\
\text { predicting } \mathrm{P} \text { or } \mathrm{V} \text { after a state change }
\end{gathered}
$$

Charles's Law: Volume and Temperature

"Volume of a gas is directly proportional to Kelvin temp, at fixed n and P ."

$V \propto T$

(at fixed n, P)

Charles's Law: Volume and Temperature

Charles's Law: Volume and Temperature

> As temperature increases, volume increases.

Useful Form of Charle's Law

$$
\begin{aligned}
& V \propto T \\
& \text { (at fixed } n, P \text {) } \\
& \mathrm{V}=\mathrm{c} \times \mathrm{T}(\mathrm{c}=\mathrm{a} \text { constant }) \\
& \frac{\mathrm{V}}{\mathrm{~T}}=c \\
& \begin{array}{|l|}
\hline \mathrm{V}_{1} \\
\mathrm{~T}_{1} \\
= \\
\mathrm{V}_{2} \\
\mathrm{~T}_{2} \\
\hline
\end{array}
\end{aligned}
$$

Ex Probs

Absolute Zero (0 K) from Charles's Law

$$
\mathrm{V}=c \times \mathrm{T}
$$

- V extrapolates to 0 when T = 0 K .
- Since gas cannot have neg. volume, suggests temps lower than 0 K cannot be reached.
- 0 K = absolute zero

Combined Gas Law

Combine Boyle's Law:

$$
V \propto \frac{1}{P} \quad(\text { at fixed } V, n)
$$

Charles's Law: $\mathrm{V} \propto \mathrm{T} \quad$ (at fixed P, n)

$$
\begin{aligned}
& V \propto \frac{T}{P} \\
& \frac{P V}{T}=k
\end{aligned}
$$

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

Avogadro's Law: Volume and Moles

"Volume is directly proportional to moles of gas, at fixed T and P."
$\mathrm{V} \propto \mathrm{n} \quad$ (fixed T, P)

Avogadro's Law: Volume and Moles

Useful Form of Avogadro's Law

$$
\begin{array}{ll}
\mathrm{V} \propto \mathrm{n} & \text { (fixed } T, P) \\
\mathrm{V}=a \times \mathrm{n} & \text { (a is a constant) } \\
\frac{\mathrm{V}}{\mathrm{n}}=a
\end{array}
$$

$$
\begin{array}{|l|}
\hline \mathrm{V}_{1} \\
\mathrm{n}_{1}
\end{array}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}
$$

Ideal Gas Law

Boyle's Law: $\quad V \propto 1 / P$
 (at fixed V, n)

Charles's Law: $V \propto T \quad$ (at fixed P, n)
Avogadro's Law: $\mathrm{V} \propto \mathrm{n}$
(at fixed P, T)

$$
V=\frac{R(T n)}{P} \quad \begin{aligned}
& R=\text { universal gas constant } \\
& =0.0821 \frac{\mathrm{~L} \text {-atm })}{\mathrm{mol}-\mathrm{K}}
\end{aligned}
$$

$P V=n R T$
Ideal Gas Law
Ex Probs

Finding Molar Mass of Gas from Ideal Gas Law

1. Find moles of gas from $\mathrm{PV}=\mathrm{nRT}$
2. Use molar mass = mass/moles

Real Gas Behavior

- Real gases deviate from ideal behavior under very high pressures and very low temperatures.

Gases in Mixtures

eత2G々 !U W!Xfnlę

Dalton's Law of Partial Pressures

Dalton's Law:

For a mixture of gases in a container:

$$
P_{\text {Total }}=P_{1}+P_{2}+P_{3}+\ldots
$$

($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, etc. = Partial pressure: the pressure contributed by a given gas in a mixture to the total pressure)

Dalton's Law of Partial Pressures

Dalton's Law: "The total pressure exerted is the sum of the partial pressures of the component gases."

Partial Pressures

- The partial pressure of each gas in a mixture is dependent only on the moles of each gas.
- So $P_{1}=X_{1} P_{\text {Tot }} \quad$ where $X_{1}=$ mole fraction of

$$
\text { gas } 1=n_{1} / n_{\text {Tot }}
$$

- And, according to Dalton's Law:

$$
\mathrm{P}_{\text {Tot }}=\mathrm{X}_{1} \mathrm{P}_{\text {Tot }}+\mathrm{X}_{2} \mathrm{P}_{\text {Tot }}+\mathrm{X}_{3} \mathrm{P}_{\text {Tot }} \ldots
$$

Q: Partial Pressures

At 300 K , the total pressure of the mix is 750 mmHg .

What are the partial pressures of each of the gases?

