Chem 30A

Ch 11. Gases

Ch 11. Gases

Introduction

Introduction

Gases, Liquids, and Solids

- Gas: widely spaced, rapid random motion, low density
- Liquid: closer together, randomly arranged
- Solid: Closely packed, fixed position, rigid, high density

Gases

- Have lower densities than liquid, solid.
- Easily compressed when placed under pressure.
- Assume shape and volume of their container.

Explains why gases behave as they do

- 1. Particle Motion: Gas particles (atoms or molecules) are in constant, random motion.
- 2. Particle Volume: There is a lot of space between particles compared to the size of the particles, so the volume of each particle can be assumed to be negligible (point masses).
- **3.** Particle Collisions: Gas particles do not attract or repel each other, so collisions are perfectly elastic.
- 4. Particle Energy: The average kinetic energy (energy of motion) of a collection of gas particles is directly proportional to the Kelvin temperature.

 $KE_{avg} \propto T (in K)$

Ideal Gas

 Ideal Gas: a gas that obeys all the assumptions of the kinetic-molecular theory

• Most gases display nearly ideal behavior under normal conditions.

Pressure

Pressure: the result of collisions of particles with the walls of the container

Pressure	= force	=	ma
	area		area

On Earth, atmospheric gases exert a force on all surfaces.

Barometer

Barometer: A device to measure atmospheric pressure (invented by Torricelli in 1643)

 At sea level and 0°C, atmospheric pressure = 760 mmHg

© Cengage Learning. All Rights Reserved.

Standard Atmospheric Pressure and Pressure Units

Standard atmospheric pressure: typical atmospheric pressure at sea level and 0°C

- 1 atm = 760 mmHg = 760 Torr Memorize
 - = 101,325 Pa (SI unit: Pascal = Newton/m²)
 - = 14.7 psi

Common Units of Pressure

TABLE 11.1Common Units ofPressure		
Unit	Average Air Pressure at Sea Level	
pascal (Pa)	101.325 Pa	
atmosphere (atm)	1 atm	
millimeter of	760 mm Hg	
mercury (mm Hg)	(exact)	
torr (torr)	760 torr	
	(exact)	
pounds per square	14.7 psi	
inch (psi)		
inches of mercury	29.92 in. Hg	
(in. Hg)		

Sea level: 14.7 psi Mt. Everest summit: 4.7 psi

Four properties completely describe the <u>state of</u> <u>a gas</u> (the condition of a gas at a given time):

- P = pressure
- V = volume
- T = temperature
- n = number of moles

Gas Laws

- 1. Boyle's Law: $V \propto 1$ (at fixed V, n) P
- 2. Charles's Law: V ∝ T (at fixed P, n)
- 3. Avogadro's Law: $V \propto n$ (at fixed P, T)
- 4. Combined Gas Law : $\underline{PV} = k$ (at fixed n)
- 5. Ideal Gas Law: PV = nRT

Boyle's Law: Pressure and Volume

"V and P are inversely related, at fixed n and T."

Boyle's Law: Pressure and Volume

Diver and Air Pressure

Pressure decreases → Volume of air increases.

Useful Form of Boyle's Law

PV = b

Useful Form of Boyle's Law

PV = b (at fixed n, T)

Gas changes from state 1 \rightarrow state 2, at fixed n and T.

- P₁V₁= b for gas in state 1
- $P_2V_2 = b$ for gas in state 2

 Charles's Law: Volume and Temperature

"Volume of a gas is directly proportional to Kelvin temp, at fixed n and P."

 $V \propto T$ (at fixed n, P)

Charles's Law: Volume and Temperature

Charles's Law: Volume and Temperature

As temperature increases, volume increases.

Useful Form of Charle's Law

 $V \propto T$ (at fixed n, P)

 $V = c \times T$ (c = a constant)

Ex Probs

Absolute Zero (0 K) from Charles's Law

$$V = c x T$$

- V extrapolates to 0 when T = 0 K.
- Since gas cannot have neg. volume, suggests temps lower than 0 K cannot be reached.
- 0 K = absolute zero

Combined Gas Law

Combine V **∞** 1 (at fixed V, n) Boyle's Law: Ρ Charles's Law: V ∝ Т (at fixed P, n) V ∞ Ρ PV = k P_1V_1 $\mathbf{P}_{2}\mathbf{V}_{2}$ **Ex Probs**

Avogadro's Law: Volume and Moles

"Volume is directly proportional to moles of gas, at fixed T and P."

 $V \propto n$ (fixed T, P)

Avogadro's Law: Volume and Moles

Useful Form of Avogadro's Law

 $V \propto n$ (fixed T, P) $V = a \times n$ (a is a constant)

<u>V</u> = *a*

$$V_1 = V_2$$
$$n_1 = n_2$$

Ideal Gas Law

Boyle's Law: $V \propto 1/P$ (at fixed V, n) Charles's Law: $V \propto T$ (at fixed P, n) (at fixed P, T) Avogadro's Law: V ∝ n ∞ Tn Ρ R = universal gas constant R(Tn) V = 0.0821 L-atm) Ρ mol-K PV = nRTIdeal Gas Law

Ex Probs

Finding Molar Mass of Gas from Ideal Gas Law

- 1. Find moles of gas from PV = nRT
- 2. Use molar mass = mass/moles

Real Gas Behavior

 Real gases deviate from ideal behavior under very high pressures and very low

temperatures.

Ideal gas conditions •High temperature •Low pressure

Gases in Mixtures

Gases in Mixtures

Dalton's Law: For a mixture of gases in a container: $P_{Total} = P_1 + P_2 + P_3 + \dots$

 $(P_1, P_2, P_3, etc. = Partial pressure: the pressure$ contributed by a given gas in a mixture to the totalpressure)

Dalton's Law of Partial Pressures

Dalton's Law: "The total pressure exerted is the sum of the partial pressures of the component gases."

Partial Pressures

• The partial pressure of each gas in a mixture is dependent only on the <u>moles</u> of each gas.

• So $P_1 = X_1 P_{Tot}$ where $X_1 =$ mole fraction of gas $1 = n_1/n_{Tot}$

• And, according to Dalton's Law:

 $\mathsf{P}_{\mathsf{Tot}} = \mathsf{X}_1 \mathsf{P}_{\mathsf{Tot}} + \mathsf{X}_2 \mathsf{P}_{\mathsf{Tot}} + \mathsf{X}_3 \mathsf{P}_{\mathsf{Tot}} \dots$

Q: Partial Pressures

At 300K, the total pressure of the mix is 750 mmHg.

What are the partial pressures of each of the gases?

© 2013 Pearson Education, Inc.