#### Chem 30A

# Ch 13. Solutions

# Ch 13. Solutions

#### Chem 30A

# Introduction

#### Introduction

# Solution

- Solution = Homogeneous mixture: A uniform mixture of two or more substances that has the same composition throughout
- Eg. (Air, seawater, gasoline)

- Solute: Substance present in the smaller amount; substance that is dissolved
- Solvent: Substance present in the larger amount; substance in which another substance is dissolved
- Eg. Salt water solution: Salt is the solute, water is the solvent.

# Various Types of Solutions

| Table 15.1      Various Types of Solutions |                      |                             |                     |
|--------------------------------------------|----------------------|-----------------------------|---------------------|
| Example                                    | State of<br>Solution | Original State<br>of Solute | State of<br>Solvent |
| air, natural gas                           | gas                  | gas                         | gas                 |
| vodka in water, antifreeze in water        | liquid               | liquid                      | liquid              |
| brass                                      | solid                | solid                       | solid               |
| carbonated water (soda)                    | liquid               | gas                         | liquid              |
| seawater, sugar solution                   | liquid               | solid                       | liquid              |

## Solubility Depends on Intermolecular Forces

 Solubility depends primarily on intermolecular forces: For a solute to be dissolved in a solvent, solute-solvent attraction must be <u>comparable to</u> or greater than the magnitudes of solute-solute or solvent-solvent attractive forces.



## "Like Dissolves Like"

- Substances with similar intermolecular forces form solutions with one another.
- Polar solvents dissolve polar solutes and ionic solutes.
- Nonpolar solvents dissolve nonpolar solutes.

# Soluble: Polar Solvent + Ionic Solute (Electrolyte Solution)

- Polar solvent molecules are attracted to the cations and anions of an ionic solid, and help break up the ionic solid into individual cations and anions.
- Ion-dipole force



#### Soluble: Polar Solvent + Polar Solute

 Polar solute attracts polar solvent through dipole-dipole force and, if available, hydrogen bonding.



# Question

• Why is solid sugar soluble in water?



• Why is acetone soluble in water?



#### Soluble: Nonpolar Solvent + Nonpolar Solute

• Nonpolar solute attracts nonpolar solvent through London dispersion force.



Eg. Fat

Hexane

## Insoluble: Polar Solvent + Nonpolar Solute

- Nonpolar substances do not have strong attraction to polar substances.
- Eg. Oil and water mixture: There are stronger attractions between the water molecules and between the oil molecules than between water and oil molecules.



**Ex Probs** 

# Solubility

- Solubility (quantitative): Maximum amount of solute that can dissolve in a given amount of solvent at a specified temperature (eg. Solubility of NaCl is 357 mg/ml at 25°C.)
- Saturated solution: is <u>at</u> solubility limit at equilibrium (contains maximum amount of solute that can dissolve)
- Unsaturated solution: is <u>under</u> solubility limit.
- Supersaturated solution: is <u>over</u> solubility limit for a given temp. (Occurs when solution is saturated at a higher temp then allowed to cool slowly; unstable.)

#### A Supersaturated Solution







(a) Supersaturated sodium acetate solution is disturbed.

(b)

(c)

# Miscibility

# Applies to liquid-liquid mixtures

- Miscible: Two liquids dissolve each other in all proportions.
  - Eg., Ethanol and water
- Immiscible: Two liquids are <u>in</u>soluble in each other.
  - Eg., hexane and water
- Partially miscible: Two liquids dissolve each other in limited amounts.
  - Eg., butanol and water

#### Effect of Temperature on Solubility in Water



The solubility of solids in water generally increases with increasing temperature.

#### **Solution Concentration Terms**

#### **Solution Concentration Terms**

# **Solution Concentration Terms**

- 1. Mass percent (also parts per million ppm and parts per billion ppb)
- 2. Molarity

#### **Mass Percent**

#### Mass percent

# = <u>mass of solute [g]</u> x 100 mass of solution [g]

\*Note: solution = solute + solvent

**Ex Probs** 

#### ppm and ppb

For VERY dilute solutions

- Parts per million (ppm) = <u>mass of solute [g]</u> x 10<sup>6</sup> mass of solution [g]
- Parts per billion (ppb) = <u>mass of solute [g]</u> x 10<sup>9</sup> mass of solution [g]

# Molarity

molarity (M) = <u>moles of solute</u> liters of solution

# eg. 3 M HCl = <u>3 moles of HCl</u> 1 L of solution

Read: "3 molar HCl"

- Moles of solute = M x L
- L = moles of solute
  M

## **Standard Solution**

- Standard solution: A solution whose concentration is accurately known.
- Steps to preparing a standard solution
  - Weigh out a sample of solute and transfer to a volumetric flask.
  - 2. Add solvent and mix to dissolve the solute.
  - 3. Finish adding solvent to volume mark on flask and mix.



## Ion Concentration



# 5 M NaCl

- What is the molar 5M concentration of Na<sup>+</sup>?
- What is the molar 5M concentration of Cl<sup>-</sup>?

Dilution: the process of adding water to a concentrated (stock) solution to get a solution of desired molarity

#### Eg. Prepare 500.0 mL of 0.40 M HCl from 10.0 M HCl.



How much stock solution and how much water?

$$M_{\rm c} \times V_{\rm c} = M_{\rm d} \times V_{\rm d}$$

Amount of water that needs to be added:

$$V_{c} + V_{water} = V_{d} \rightarrow V_{water} = V_{d} - V_{c}$$

# Moles of solute in conc'd solution = moles of solute in diluted solution





## Osmosis

 Osmosis: the passage of solvent through a semipermeable membrane separating two solutions of different concentrations

 Semipermeable membrane: a membrane that allows some substances to pass through but not others

# Osmosis

The net movement of solvent is always toward the solution with the higher concentration (Solvent can pass through; solute cannot).



#### **Osmotic Pressure**

Osmotic pressure: the excess pressure that a dissolved substance exerts on the semipermeable membrane



#### **Relative Solute Concentrations**

- Isotonic: Having the same solute concentration as another solution
- Hypertonic: Having a greater solute concentration than another solution
- Hypotonic: Having a lower solute concentration than another solution

# Osmosis Through Red Blood Cell Membrane

Cell membranes are semipermeable. Cytoplasm has a constant solute concentration

# → H<sub>2</sub>O movement









Cell in Isotonic Solution

Cell in Cell in Hypertonic Solution