

Ch 17. Radioactivity and Nuclear Chemistry

Ch 17. Radioactivity and Nuclear Chemistry

Nuclear Activity

 The nucleus does not strongly affect the chemistry of the atom (bond making/ breaking).

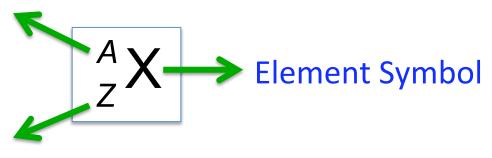
• HOWEVER, the nucleus can undergo changes, which usually cause an element to change into another element.

Implications of Nuclear Activity for Humans

- Hazardous effects of radiation
- Medical applications of radioactivity
- Dating by radioactivity
- Nuclear energy
- Nuclear weapons

Radioactivity

Radioactivity


Radioactivity: the spontaneous decomposition of atomic nuclei, which releases high-energy particles or rays

$${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e}$$

- Radioactive decay results in a different nucleus.
- Nuclide: a nucleus with a specified number of protons and neutrons (= a specific isotope)

Isotope Symbol

Mass Number (number of protons + neutrons

Atomic Number (number of protons) Identifies element

Similar notation for subatomic particles

Proton $\frac{1}{1}p$ Neutron $\frac{1}{0}n$ Electron $\frac{0}{-1}e$

Radioactivity

- Every element has at least one isotope whose nucleus spontaneously decomposes (radioisotope).
- A certain level of radiation naturally occurs all around us, even in our bodies (potassium-40).

Parent nuclide Daughter nuclides

$$238_{92}U \longrightarrow 234_{90}Th + \frac{4}{2}He$$

Nuclear Equations

 ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$

In a balanced nuclear equation, both the <u>atomic</u> <u>number</u> and the <u>mass number</u> must be conserved.

1. Alpha Particle (α) Emission

$$^{222}_{88}\text{Ra} \rightarrow ^{4}_{2}\text{He} + ^{218}_{86}\text{Rn}$$
$$^{230}_{90}\text{Th} \rightarrow ^{4}_{2}\text{He} + ^{226}_{88}\text{Ra}$$

- α particle = helium nucleus ${}^{4}_{2}He$
- Net effect: loss of 4 in mass number, loss of 2 in atomic number

2. Beta Particle (β) Emission

$$^{234}_{90}\text{Th} \rightarrow ^{234}_{91}\text{Pa} + ^{0}_{-1}\text{e}$$

- β particle: an electron $-{}_{1}^{0}e$
- Net effect: A neutron is changed into a proton.

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e$$

3. Gamma Ray (γ) Emission

$$^{238}_{92}U \rightarrow {}^{4}_{2}He + {}^{234}_{90}Th + 2{}^{0}_{0}\gamma$$

- Gamma ray: high-energy photon of light (no charge or mass)
- Often accompanies different types of nuclear decays
- Net effect: no change in mass or atomic number

4. Positron Emission

$$^{22}_{11}Na \rightarrow ^{0}_{1}e + ^{22}_{10}Ne$$

- Positron (β⁺): a particle with same mass as electron but opposite charge ⁰₁e
- Net effect: A proton is changed into a neutron.

$${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{1}^{0}e$$

Electron Capture

$$^{201}_{80}\text{Hg} + {}^{0}_{-1}\text{e} \rightarrow {}^{201}_{79}\text{Au} + {}^{0}_{0}\gamma$$

$$\uparrow$$

- One of the inner-orbital electrons is captured by the nucleus.
- Net result: Changes proton into neutron.
- A way to make gold? Impractical

Summary: Radioactivity

TABLE 11.2 A Summary of Radioactive Decay Processes				
Process	Symbol	Change in Atomic Number	Change in Mass Number	Change in Number of Neutrons
α emission	4_2 He or α	-2	-4	-2
β emission	$^{0}_{-1}$ e or eta^{-*}	+1	0	-1
γ emission	${}^{0}_{0}\gamma$ or γ	0	0	0
Positron emission	0_1 e or $eta^+ st$	-1	0	+1
Electron capture	E.C.	-1	0	+1

*Superscripts are used to indicate the charge associated with the two forms of beta decay; β^- , or a beta particle, carries a -1 charge, while β^+ , or a positron, carries a +1 charge. © 2013 Pearson Education, Inc.

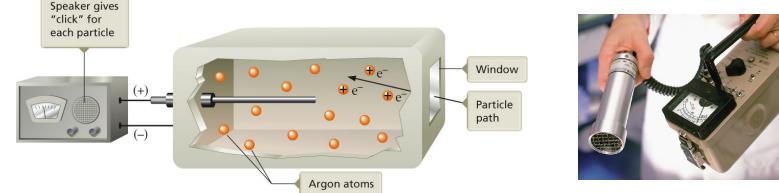
Ex Probs

Nuclear Transmutation

- Nuclear transmutation: the change of one element into another by particle bombardment (neutron, α particle, proton, nucleus)
- Most of the ~3300 known radioisotopes are made through artificial nuclear transmutation in particle accelerators.

$$\begin{bmatrix} 14 \\ 7 N + \frac{1}{0}n \rightarrow \frac{14}{6}C + \frac{1}{1}H \\ \end{bmatrix}$$

$$\begin{bmatrix} 238 \\ 92 U + \frac{4}{2}He \rightarrow \frac{241}{94}Pu + \frac{1}{0}n \end{bmatrix}$$

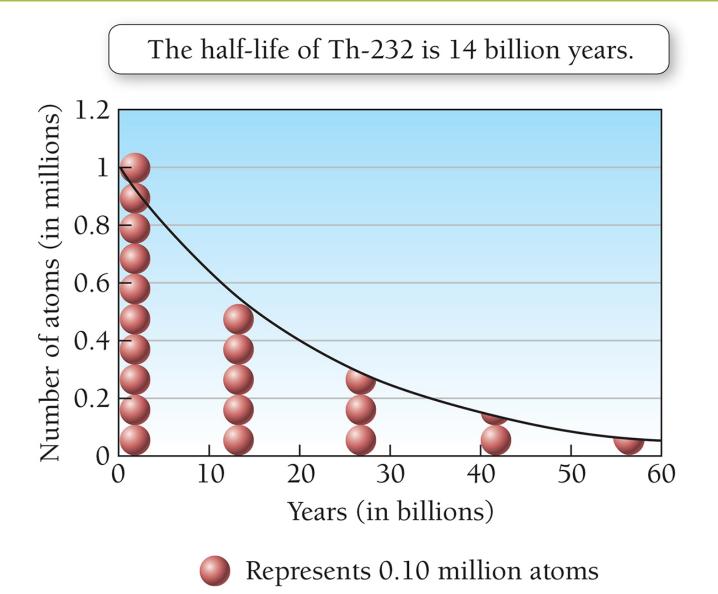

Nuclear Transformation, cont'd

 All elements with atomic numbers greater than 92 (transuranium elements) have been artificially made.

Detection of Radioactivity

• Geiger-Müller counter: High-energy particles ionize argon; argon ions can conduct electricity

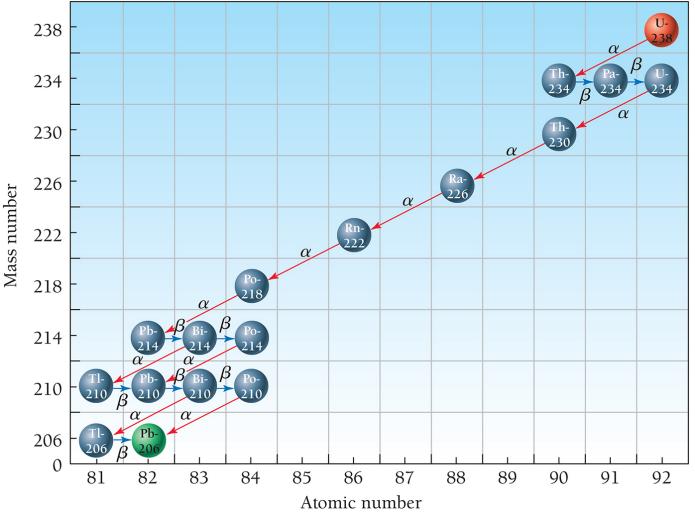
- Scintillation counter: Uses a substance that gives off light when struck by high-energy particles
- Thermoluminescent dosimeters: Electrons excited by high-energy particles are trapped in crystals, then heated to relax into ground state and emit light


Half-Life

Half-life: Time required for half of the original sample of nuclei to decay

Half Life of Th-232

Half-lives of Radium Nuclides


TABLE 17.2Selected Nuclidesand Their Half-Lives

Nuclide	Half-Life	Type of Decay
²³² Th	$1.4 imes10^{10}$ yr	alpha
²³⁸ 92U	$4.5 imes10^9$ yr	alpha
¹⁴ ₆ C	5715 yr	beta
²²⁰ 86Rn	55.6 s	alpha
²¹⁹ 90Th	$1.05 imes10^{-6} m s$	alpha

Ex Probs

U-238 Decay Series

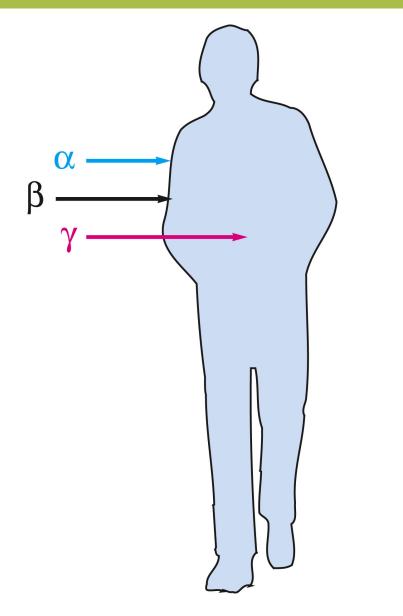
In many cases, daughter nuclides are also radioactive.

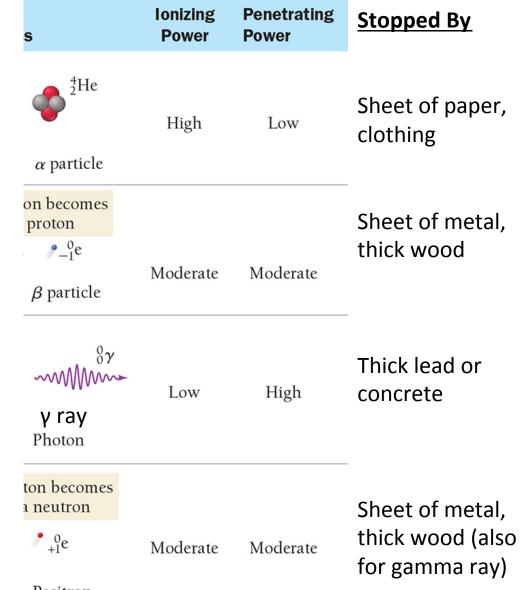
Application: Radiocarbon Dating (C-14 Dating)

 ${}^{14}_{7}N + {}^{1}_{0}n \longrightarrow {}^{14}_{6}C + {}^{1}_{1}H \qquad \text{C-14 Made}$ ${}^{14}_{6}C \longrightarrow {}^{0}_{-1}e + {}^{14}_{7}N \qquad \text{C-14 Broken down}$

Half-life of ¹⁴C = 5715 years

- Atmosphere has constant amount of ¹⁴C.
- ¹⁴C content in a living plant is constant due to constant uptake of ¹⁴CO₂ by plant.
- At moment of death, plant ¹⁴C decays without replenishment.
- So ¹⁴C content of fossil tells how much time has passed since the plant died (age).


Effect of Radiation on Life


Effect of Radiation on Life

Damaging Effects of Radiation

- Ionizing power: ability of radiation to ionize molecules and atoms. More massive particles have more potential to interact with and ionize other molecules.
- Penetrating power: ability of radiation to penetrate matter. Smaller particles can penetrate more deeply.

Effects of Different Types of Radiation

Positron

Types of Radiation Damages

- Acute radiation damage: damage to cells resulting from exposures to large amounts of radiation in short period of time
- Increased cancer risk: Lower radiation doses over a longer period of time can cause damage to somatic cells and increase cancer risk.
- Genetic defects: damage to DNA in reproductive cells that shows effect in offspring

Effects of Short-Term Radiation Exposure

Rem: A unit that indicates biological damage of radiation

TABLE 17.4Effects of Radiation Exposure

Dose (rem)	Probable Outcome
20–100	decreased white blood cell count; possible increase in cancer risk
100–400 500	radiation sickness; skin lesions; increase in cancer risk death

Biological Effects of Radiation

Typical Radiation Exposure in U.S.

Table 19.6 Typical Radiation Exposures for a Person Living in the United States		
(1 millirem = 10^{-3} rem)		
Source	Exposure (millirems/year)	
cosmic	50	
from the earth	47	
from building materials	3	
in human tissues	21	
inhalation of air	5	
Total from natural sources	126	
X-ray diagnosis	50	
radiotherapy X rays, radioisotopes	10	
internal diagnosis and therapy	1	
nuclear power industry	0.2	
luminous watch dials, TV tubes,		
industrial wastes	2	
radioactive fallout	4	
Total from human activities	67	
Total	193 = 0.193 rem	

Nuclear Medicine Application: Radiotracers

 Radiotracers: radioactive nuclides that can be put into organisms through food or drugs, and be traced for medical diagnostics

Table 19.4 Some Radioactive Nuclides, Their Half-lives, and Their Medical Applications as Radiotracers*				
Nuclide	Half-life	Area of the Body Studied		
¹³¹ I	8.1 days	thyroid		
⁵⁹ Fe	45.1 days	red blood cells		
⁹⁹ Mo	67 hours	metabolism		
³² P	14.3 days	eyes, liver, tumors		
⁵¹ Cr	27.8 days	red blood cells		
⁸⁷ Sr	2.8 hours	bones		
⁹⁹ Tc	6.0 hours	heart, bones, liver, lungs		
¹³³ Xe	5.3 days	lungs		
²⁴ Na	14.8 hours	circulatory system		

*Z is sometimes not written when listing nuclides.

Radiotracers in PET Scans

- PET: positron emission tomography
- Examples of positron-producing isotopes: ¹⁸F, ¹¹C
- These radioactive isotopes are attached to glucose.
- Areas of brain rapidly consuming these radiotracers "light up" on PET screen.
- Short half-lives (110 min for ¹⁸F, 20 min for ¹¹C) require speedy synthesis.

Nuclear Medicine Application: Radiotherapy

- Gamma rays are used to kill rapidly dividing cancer cells.
- Patients undergoing radiotherapy develop symptoms of radiation sickness (vomiting, hair loss, skin burns).

