Chem 30A

Ch 4. Atoms and Elements

Ch 4. Atoms and Elements

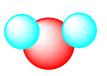
Early View of Atomic Structure

Early View of Atomic Structure

In the Beginning...

Greeks (~400 BC)

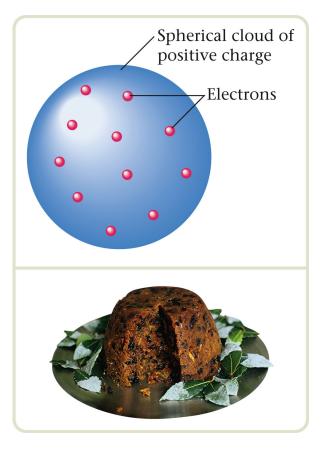
- Four elements fire, earth, water, air
- Is matter continuous or made of discrete particles (atomos)?
- Alchemists (next 2000 years)
 - First chemists
 - Discovered elements; acid preparation

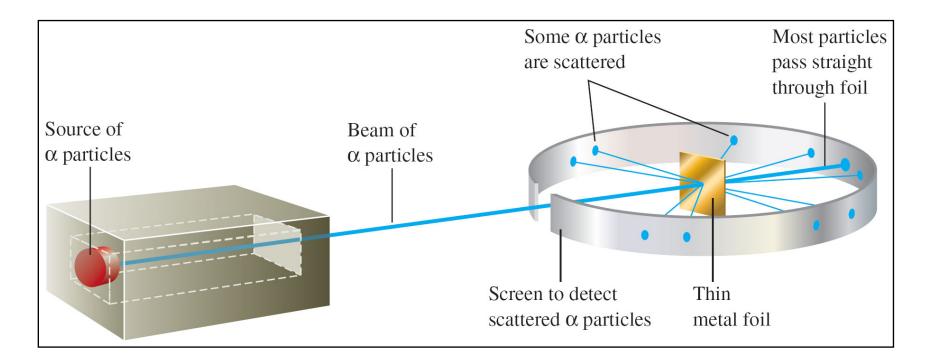

Robert Boyle (1627-1691)

- Science should be grounded in experiments.
- Elements are substances that cannot be broken down into simpler substances.

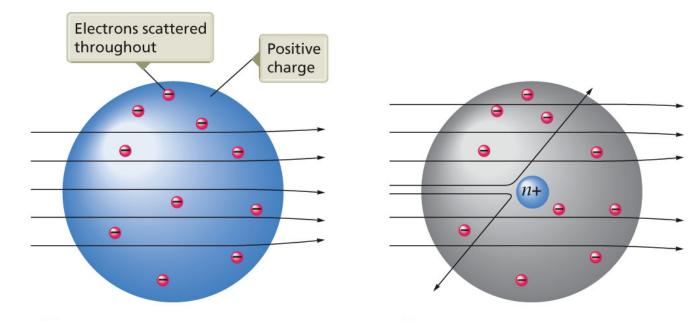
Dalton's Atomic Theory (1808)

- Each element is made of tiny indivisible particles called atoms that cannot be created nor destroyed (law of conservation of matter).
- 2. Atoms of an element cannot be converted to atoms of another element. In chemical reactions, atoms re-combine to form different substances (change the way they are bound to each other).


- 4. The atoms of a given element are identical, and different from those of any other element.
- Atoms of one element can combine with atoms of other elements to form <u>compounds</u>. A given compound always has the same relative numbers and types of atoms.


Hypothesized Atomic Structure, 1910

Lord Kelvin, 1910
– Plum pudding model



Rutherford's Gold Foil Experiment

 1911: Ernest Rutherford shot α-particles (positively charged particles with mass 7300x that of electron) through gold foil.

Rutherford's Gold Foil Experiment

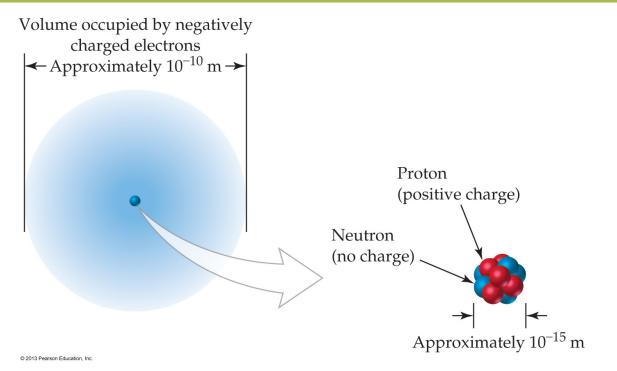
Expected

Observed

The Nuclear Atom

Earnest Rutherford concluded the nuclear atom: (1911-1919)

- An atom is mostly empty space that is occupied by electrons.
- Atom has a tiny, dense center of positive charge: nucleus.
- The nucleus contains particles called protons, which have charge of same magnitude as electrons but are positive.
- Most nuclei also contain a neutral particle: neutron. (with Chadwick, 1932)

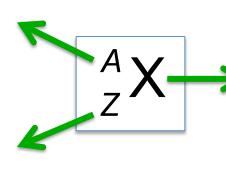

The Nuclear Atom

- *Protons:* Found in the nucleus; has positive charge equal in magnitude to the electron's negative charge.
- *Neutrons*: Found in the nucleus; no charge; virtually same mass as a proton.
- *Electrons*: Found outside the nucleus, relatively far from the nucleus; negatively charged.

Modern Atomic Theory

Modern Atomic Theory

Modern View of Atomic Structure


- Small, dense nucleus (nucleus diameter ~10⁻¹⁵ m). Nucleus accounts for almost all of atom's mass.
- Electron moving far from nucleus (atom diameter ~10⁻¹⁰ m). Electron accounts for atom's size.

Modern View of Atomic Structure

TABLE 4.1	Subatomic Particles		
	Mass (kg)	Mass (amu)	Charge
proton	$1.67262 imes 10^{-27}$	1.0073	1+
neutron	$1.67493 imes 10^{-27}$	1.0087	0
electron	$0.00091 imes 10^{-27}$	0.00055	1-

Symbols for Atoms (Isotope Symbols)

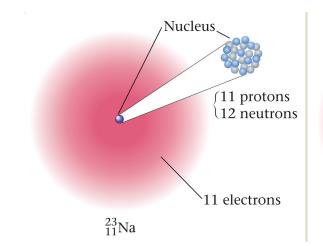
Mass Number (number of protons + neutrons

Element Symbol unique one- or two-letter symbol

Atomic Number (number of protons)

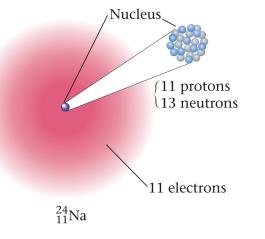
No. of protons = atomic number Z = IDENTIFIES ELEMENT!

No. of neutrons = Mass number A – Atomic number Z No. of electrons = No. of protons (since atoms are neutral)


Ex Probs

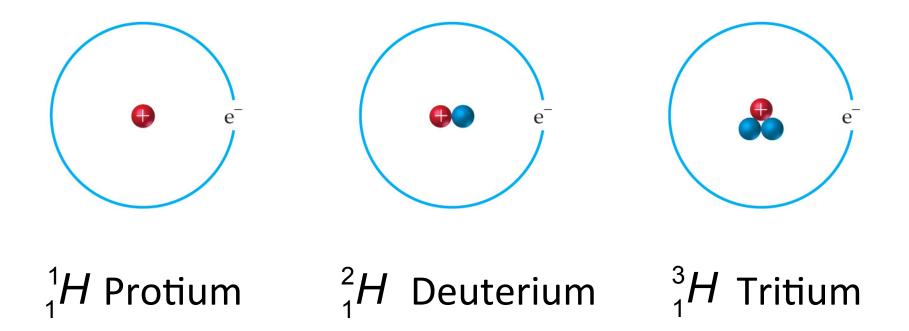
Isotopes

Isotopes: Atoms with same number of protons, but different numbers of neutrons


→ So, isotopes have same atomic number (same element), but different mass numbers

Sodium Isotopes

- 11 = Atomic number Z (11 protons)
- 23 = Mass number A
- A Z = 12 neutrons



"Sodium-24" ²⁴₁₁Na

- 11 = Atomic number Z (11 protons)
- 24 = Mass number A
- A Z = 13 neutrons

Hydrogen Isotopes

Isotopes

- Show almost identical chemical properties (The chemistry of atom is due to its <u>electrons</u>!).
- In nature, most elements contain mixture of isotopes.

Carbon Isotope	Natural Abundance
¹² C	98.89%
¹³ C	1.11%

Atomic Mass

 Atoms have very tiny masses, so scientists made a unit for atomic mass to avoid using very small numbers.

1 atomic mass unit (amu) = 1.660539×10^{-24} g

Atomic Mass Unit

• Definition of <u>atomic mass unit</u> is based on ¹²C:

One atom of ¹²C has a mass of exactly <u>12 amu</u>.

So, 1 amu = 1/12 the mass of ¹²C atom = 1.660539 ×10⁻²⁴ g

Masses of all other atoms are relative to this ¹²C standard.

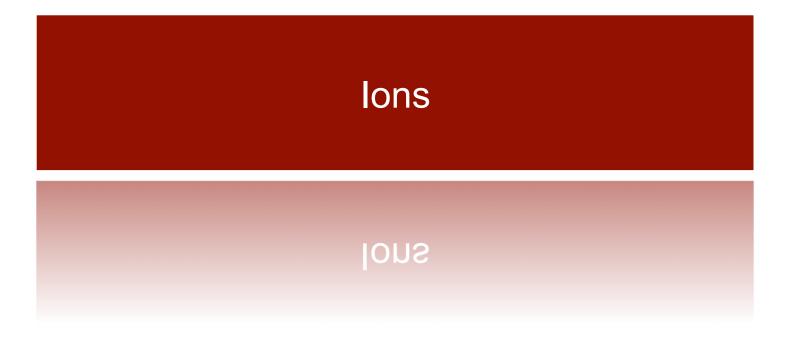
Atomic Mass

 On the periodic table, why does C have a mass of <u>12.01 amu</u>, NOT <u>12 amu</u>?

The atomic mass on the periodic table is an <u>average</u> atomic mass– weighted average of masses of all the isotopes of an element.

Finding Atomic Mass of an Element

Carbon Isotope	Natural Abundance
¹² C	98.89%
¹³ C	1.11%

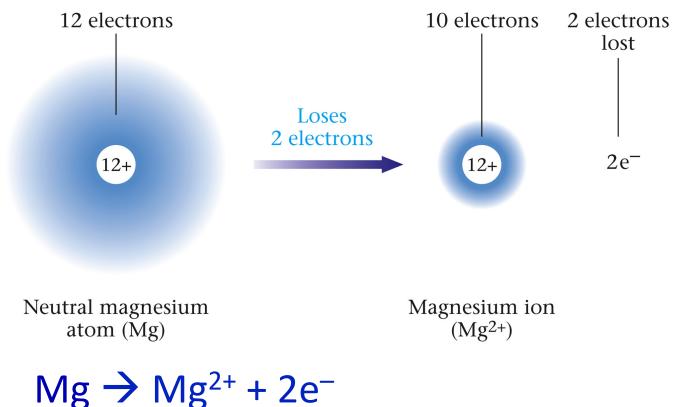

Atomic weight of element = Σ[fractional abundance_i x isotopic mass_i]

For C: (0.9889)(12amu) + (0.01110)(13.0034 amu) =

<u>12.01 amu</u>

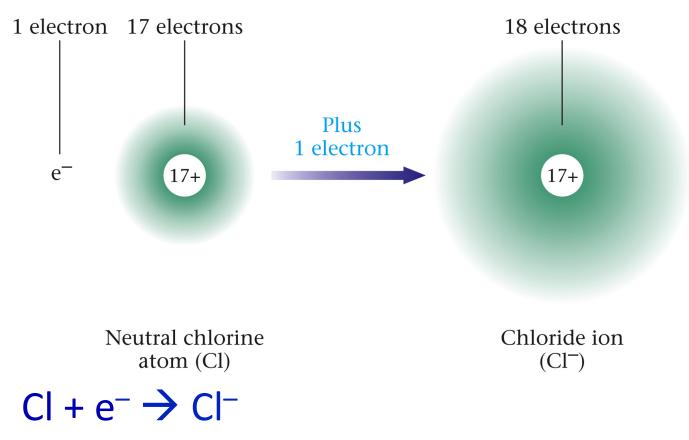
(*No carbon atom actually has a mass of 12.01 amu- it's an <u>average</u> mass.)

Ex probs



lons

- Atoms are neutral, having a net charge of zero.
- When electrons are removed from or added to a neutral atom, a charged particle called ion is formed.


Cations

 Atoms <u>lose</u> one or more electrons to form positive ions called cations.

Anions

 Atoms <u>gain</u> one or more electrons to form negative ions called anions.

Isotope Symbols for Ions

Ions can also be represented by isotope symbols.

²³₁₁Na⁺

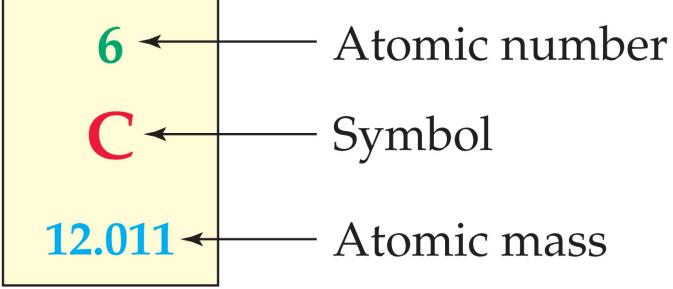
Ex Probs

Elements and the Periodic Table

Elements and the Periodic Table

Periodic Table

- A way of organizing elements
- First arranged by Dmitri Mendeleev in 1869
- Modern periodic table is arranged by atomic number.
- Shows recurring properties, so helps predict properties of elements


The properties (colors) of these elements form a repeating pattern.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Η	He	Li	Ве	В	С	Ν	0	F	Ne	Na	Mg	Al	Si	Р	S	Cl	Ar	Κ	Ca

The Periodic Table of the Elements

	1A 1						Me	etals							8A 18			
1	1 H	2A 2						onmeta etalloid					3A 13	4A 14	5A 15	6A 16	7A 17	2 He
2	3 Li	4 Be				L			.5				5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	— 8B — 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
			Lantha	nides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			Acti	nides	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Periodic Table Entries

© 2013 Pearson Education, Inc.

Element Symbols

- Each element has a unique one- or two-letter symbol.
- First letter is always capitalized and the second is not.
- The symbol usually consists of the first one or two letters of the element's name.

Oxygen O

Krypton Kr

 Sometimes the symbol is taken from the elements original Latin or Greek name.

> Gold Au (aurum) Lead Pb (plumbum)

Names and Symbols of Common Elements

Table 4.3	The Names and Sym	bols of the M	ost Common Elements	
Element	Sym	ibol	Element	Symbol
aluminum	А	l li	ithium	Li
antimony (stib	oium)* Sl	o n	nagnesium	Mg
argon	А	r n	nanganese	Mn
arsenic	А	s n	nercury (hydrargyrum)	Hg
barium	B	a n	neon	Ne
bismuth	В	i n	nickel	Ni
boron	В	n	nitrogen	Ν
bromine	В	r o	oxygen	0
cadmium	С	d p	phosphorus	Р
calcium	C	a p	olatinum	Pt
carbon	С	р	ootassium (kalium)	Κ
chlorine	С	l ra	adium	Ra
chromium	С	r s	ilicon	Si
cobalt	C	o s	ilver (argentium)	Ag
copper (cuprur	m) C	u se	odium (natrium)	Na
fluorine	F	S	trontium	Sr
gold (aurum)	А	u s	ulfur	S
helium	Н	e ti	in (stannum)	Sn
hydrogen	Н	ti	itanium	Ti
iodine	Ι	t	ungsten (wolfram)	W
iron (ferrum)	Fe	e u	ıranium	U
lead (plumbun	n) P	o z	inc	Zn

*Where appropriate, the original name is shown in parentheses so that you can see where some of the symbols came from.

Periodic Table

	gro	Main- group elements Transition elements												Main-group elements							
		Group																			
	1A ⁿ	umber	r															8A			
1	1 H	2A											3A	4A	5A	6A	7A	2 He			
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne			
م م	11 Na	12 Mg	3B	4B	5B	6B	7B		8B		1B	2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar			
Periods +	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr			
<u>н</u> 5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe			
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn			
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og			

Periodic Table

	metals gase															Noble gases		
	$ $ ϵ	Alka earth 1		5												Ha	logen	s ↓ 8A
Γ	1	↓												Grou	p nun	nbers	Ļ	2
	Н	2A		-														He
	3 Li	4 Be		5 6 7 8 9 10 B C N O F N														
	11 Na	12 Mg	·	Transition metals 13 14 15 16 Al Si P S														18 Ar
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 R a	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
		Lan	thani	des	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Actinides					90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Features of the Periodic Table

- Row = <u>Period</u>
 - Numbering of periods (7 periods)
 - Some periods are named: Lanthanides, Actinides

Features of the Periodic Table, cont'd

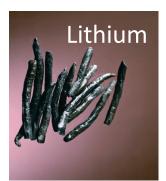
- Column = <u>Group</u> = Family
 - Numbering of groups (18 groups, A and B groups)
 - Names of groups:
 - A groups = Main Group elements
 - B groups = Transition Metal elements
 - 1A = alkali metals
 - 2A = alkaline earth metals
 - 7A = halogens
 - 8A = noble gases

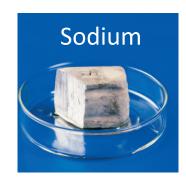
Periodic Table Shows Periodic Patterns

Members of same groups have similar chemical and physical properties.

- Group 1A (alkali metals): Shiny soft metals, low melt pts, react rapidly with water to form alkaline (basic) products.
- Group 2A (alkaline earth metals): Shiny metals, less reactive than 1A metals.
- Group 7A (halogens): Colorful, corrosive nonmetals.
- Group 8A (noble gases): Colorless gases, distinct lack of chemical reactivity.

Metals, Nonmetals, and Metalloids


- Metals: Left of stair-step line
- Nonmetals: Right of stair-step line
- Metalloids/ semimetals: Along stair-step line

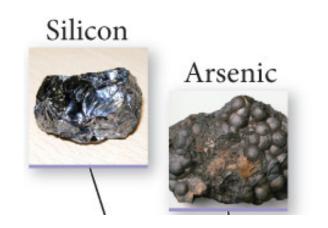

	1A 1						Me	etals										8A 18
1	1 H	2A 2		Nonmetals 3A 4A 5A 6A 7A Metalloids 13 14 15 16 17											2 He			
2	3 Li	4 Be		5 6 7 8 B C N O											9 F	10 Ne		
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	— 8B — 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
		1	Lantha	nides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			Acti	nides	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Metal Elements

Physical Properties of Metals

- Efficiently conducts heat and electricity
- Malleable (can be hammered into thin sheets)
- Ductile (can be pulled into wires)
- Lustrous (shiny)
- Almost all metals are solids at normal temperatures (Exception: Mercury is liquid.)

Nonmetal Elements

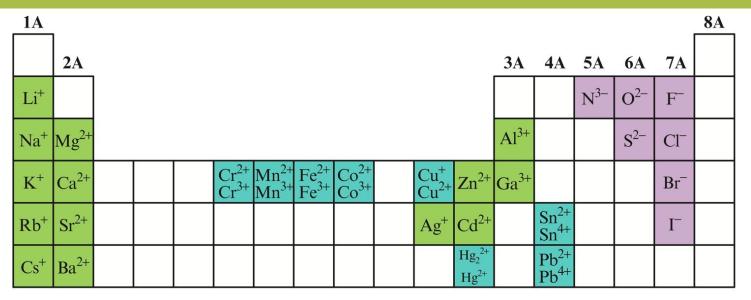

Physical Properties of Nonmetals

- Do not conduct electricity.
- More variable than metals.
- Solid nonmetals are usually hard, brittle.
- Most nonmetals are gases or solids [Exception: Bromine is liquid.]

Physical Properties of Metalloids

- Have both metallic and nonmetallic properties.
- Good semiconductors: Poor conductors of electricity at room temperature, but become moderately good conductors at higher temperature or with addition of impurities

Ex Probs


Periodic Table Shows Ion Formation Trend

In a chemical reaction:

 <u>Metal</u> elements tend to <u>lose</u> electrons and form cations (positive ions).

 <u>Nonmetal</u> elements tend to <u>gain</u> electrons and form anions (negative ions).

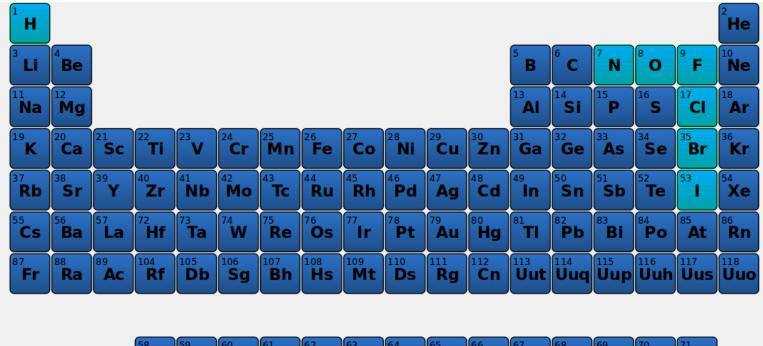
Common Ion Charges (Know!)

Metals form cations.

- Groups 1A,2A,3A:
 charge = group #
- Transitions metals: Many have variable charges.

Nonmetals form anions.

- Group 5A: charge = -3
- Group 6A: charge = -2
- Group 7A (halogens):
 charge = -1
- Group 8A (noble gases): charge =0 Ex Probs


Periodic Table: Natural States of Elements

Most elements are solids at room temperature.

						Perio	dic T	able	of the	Eler	nents	5								
1A							N	latural	Form			http://ch	emistry.	about.cor	n		8A			
1												©2010 Todd Helmenstine								
H ₂	V120300												About Chemistry							
GAS	2A											3A 5	4A	5A	6A	7A	GAS			
3 Li	4 Be	Solid Louid Cos											6 C	Ń	⁸	9 F	10 Ne			
BCC	HEX		Solid Liquid Gas											GAS	GAS	GAS	GAS			
11	12	1										13	14	15	16	17	18			
Na	Mg											AI	Si	Р	S	CI	Ar			
BCC	HEX	3B	4B	5B	6B	7B	8	— 8B —		1B	2B	FCC	FCC	CUBIC	ORTHO	GAS	GAS			
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36			
К	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr			
BCC 37	FCC 38	HEX 39	HEX 40	BCC 41	800 42	800 43	800 44	HEX 45	FCC 46	FCC 47	HEX 48	ORTHO 49	FCC 50	RHOM 51	HEX 52	53	GAS 54			
Rb	Sr	Ŷ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Te	ĩ	Xe			
BCC	FCC	HEX	HEX	BCC	BCC	HEX	HEX	FCC	FCC	FCC	HEX	TETRA	TETRA	RHOM	HEX	ORTHO	GAS			
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86			
Cs	Ba		Hf	Та	W	Re	Os	lr -	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn			
BCC	BCC	Lanthanides	(HEX)	BCC	BCC	HEX	HEX	FCC	FCC	FCC	LIQUID	HEX	FCC	RHOM	CUBIC	UNK	GAS			
87	88	89-103			- 101 -				-16 116											
Fr	Ra BCC	Actinides	E	lements	> 104 e	kist only	for very	snort n	an-mes	and the	data is i	unknown	1.							
Chars	but	Potentions	1																	
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71			
	Lanthar	ides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu			
			HEX	FCC	HEX	HEX	HEX	RHOM	BCC	HEX	HEX	HEX	HEX	HEX	HEX	FCC	HEX			
	Activity	-	89 Ac	90	91	92	93	94	95	96	97	98	99	100	101	102	103			
	Actinides			Th FCC	Pa TETRA	U	Np ORTHO	Pu	Am HEX	Cm	Bk	Cf	Es HEX	Fm UNK	Md	No	Lr			
			FCC	100	15 IKA		st stable o				HEA.	nex.	HEA	UNA	Unix	UNA.	Unin			
		CUBIC	Simple Cu	ubic	FCC	Face Cent				hombic	TETR	A Tetrag	onal	UNK Un	known					
		BCC	Body Cen	tered Cubic	HEX	Hexagona	4	RHON	Rhom	ohedral	MONG	Monoo	linic							

Periodic Table: Natural States of Elements

Some elements exist as diatomic molecules (molecules of two atoms): H_2 , N_2 , O_2 , all group 7A elements

58 Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	⁷¹ Lu
90	⁹¹	⁹² U	⁹³	⁹⁴	95	96	⁹⁷	98	99	¹⁰⁰	¹⁰¹	¹⁰²	¹⁰³
Th	Ра		Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Hydrogen

- In natural state, hydrogen is a <u>nonmetal</u> (It is NOT an alkali metal).
- In natural state, hydrogen is a diatomic element.
- Hydrogen can form cation (H⁺ = proton) or anion (H⁻ = hydride).
- A hydrogen atom does not have a neutron!

Expanded Periodic Table of the Elements

1	1 H																															2 He
2	3 Li	4 Be																									5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	1																								13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	ĺ.														21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	<mark>36</mark> Kr
5	37 Rb	38 Sr															39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	<mark>54</mark> Xe
6	55 Cs	56 Ba	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	<mark>80</mark> Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	<mark>86</mark> Rn
7	87 Fr	88 Ra	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu		96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo

Alkali metals	Alkaline earth metals	Lanthanides	Actinides	Transition metals
Poor metals	Metalloids	Nonmetals	Halogens	Noble gases