
Chem 30A

Ch 5. Molecules and Compounds

Ch 5. Molecules and Compounds

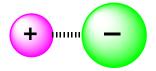
Chemical Formulas of Compounds

- 1. A given compound always has the same numbers and types of atoms (constant composition).
- 2. Each atom is represented by its element symbol.
- The number of each type of atom is indicated by a subscript to the right of the element symbol (Exception: If just one atom, no subscript).
- 4. Typically, the more metallic element is listed first.

Molecular Compounds and Ionic Compounds

Molecular Compounds and Ionic Compounds

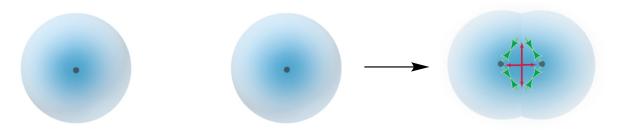
Types of Compounds


Molecular Compounds

- Covalent bond
- One unit: Molecule

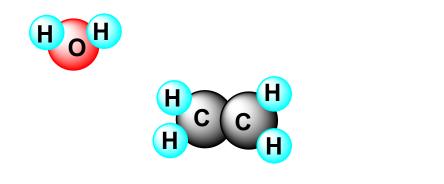
Ionic Compounds

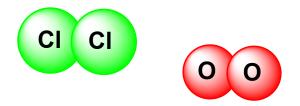
- Ionic bond
- One unit: Formula unit



Chemical bond: A force that holds groups of atoms together and makes them function as a unit.

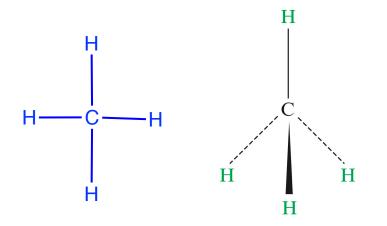
• Bonding involves just the <u>electrons</u> of atoms!


Molecular (Covalent) Compounds


 Held together through Covalent Bonds: Bonds in which electrons are <u>shared</u> between the bonded atoms.

- Molecule: a group of two or more atoms which are covalently bonded (a unit of molecular compound)
- Nonmetal + Nonmetal \rightarrow Molecular Compound

Molecules


Compounds

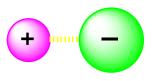
Elements

 Note: Both compounds (eg, H₂O) and elements (eg. O₂, H₂) may exist as molecules.

Representing Molecules

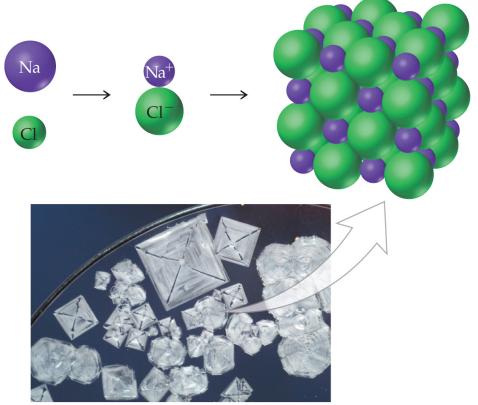
CH₄ Chemical formula

Structural formula


Ball-and-stick model

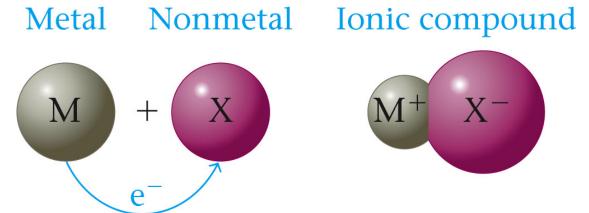
Space-filling model

Ionic Compounds

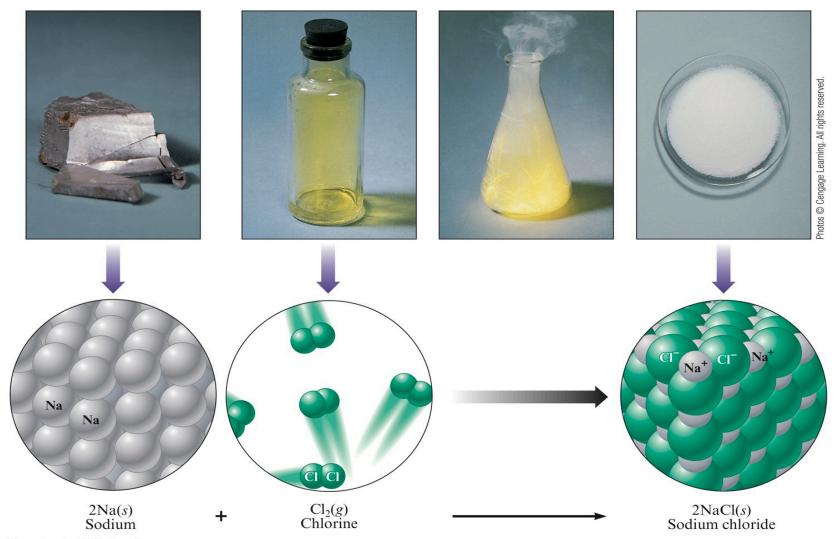

 Held together through lonic Bonds: Bonds in which oppositely-charged ions are held together by electrostatic attraction between them.

- Formula unit: A group of two or more ions which are bound through ionic bonds (a unit of ionic compound)
- Metal + Nonmetal \rightarrow Ionic Compound

Formula Units


• Formula units exist as a part of a larger 3D array (a solid).

© 2013 Pearson Education, Inc.


Ionic Compounds

 Most commonly, ionic compounds form when metals combine with nonmetals → Metal element <u>transfers electrons</u> to the nonmetal element.

Metal cation + Nonmetal anion \rightarrow ionic compound Isolated ions don't exist!

Formation of an Ionic Compound

© Cengage Learning. All Rights Reserved.

Overview: Fundamental Components of Matter

Overview: Fundamental Components of Matter

Matter

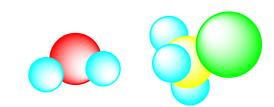
Pure Substances

- Elements
- Compounds

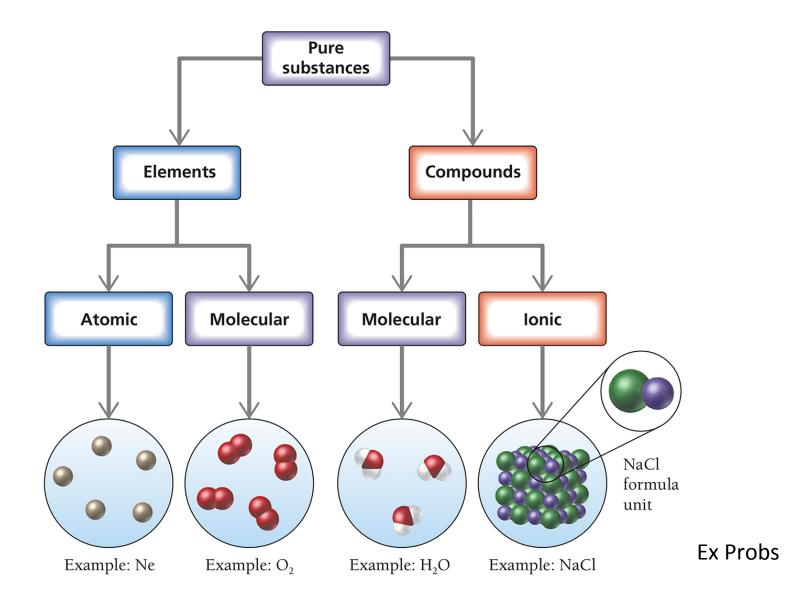
"Particles" of Matter

- Atoms
- lons
- Molecules

Elements, Compounds, Atoms, Molecules, Ions


Elements (1 type of atom) <u>Compounds</u> (more than 1 type of atom)

• Atomic 🧲


• Ionic +

Molecular

Molecular

Elements, Compounds, Atoms, Molecules, Ions

Formula (Molecular) Mass

Formula (Molecular) Mass

Formula (Molecular) Masses of Compounds

Formula mass of a compound = sum of atomic masses

- eg. Molecular mass of H_2O
 - = 2(atomic mass of H) + 1(atomic mass of O)
 - = 2(1.008 amu) + 1(16.00 amu)
 - = 18.02 amu

Chemical Nomenclature

Chemical Nomenclature

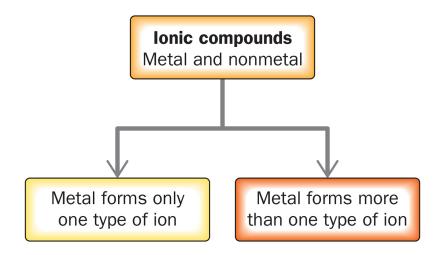
Chemical Nomenclature

 Chemical Nomenclature: a system of naming chemical substances

Common Name	Systematic Name	Formula
Grain alcohol	Ethyl alcohol	CH₃OH
Rubbing alcohol	Isopropyl alcohol	C ₂ H ₅ OH
Laughing gas	Dinitrogen oxide	N ₂ O
Milk of magnesia	Magnesium hydroxide	Mg(OH) ₂
Epsom salt	Magnesium sulfate heptahydrate	MgSO ₄ •7H ₂ O

Chemical Nomenclature

- A. Ionic Compounds (Binary and Polyatomic)
- B. Covalent Compounds (Binary)
- C. Acids


Refer to <u>Chemical Nomenclature Handout</u> for rules for naming and writing formulas.

Naming Compounds

Naming Compounds

Naming Binary Ionic Compounds

- The cation is always named first and the anion second.
- Remember: Ionic compound has a net charge of 0.
- METAL + NONMETAL = ionic compound

Naming Binary Ionic Compounds: Fixed Charge Cation

Ionic compounds containing <u>fixed-charge</u> metals (mostly main group metals):

- 1. A monatomic cation has the same name as that of the parent element.
- 2. A monatomic anion is named by taking the root of the element name and adding *—ide*.

• Examples

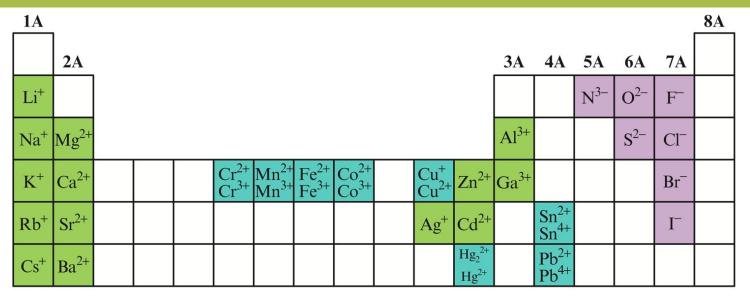
KC

potassium chloride

MgBr₂ magnesium bromide

CaO calcium oxide

Naming Binary Ionic Compounds: Variable Charge Cations


Ionic compounds containing <u>variable-charge</u> cations (mostly transition metals):

For metals that can form cations of more than one charge, <u>the charge on the metal ion must be</u> <u>specified with Roman numeral in parentheses!</u>

• Examples

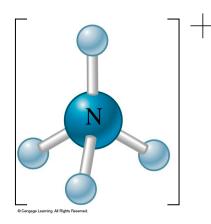
- CuBr Copper(I) bromide
- FeS Iron(II) sulfide
- PbO₂ Lead(IV) oxide

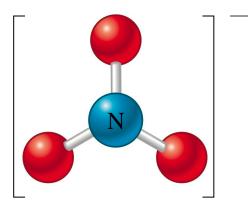
Common Ion Charges (Memorize!)

Metals form cations.

- Groups 1A,2A,3A:
 charge = group #
- Transitions metals: Many have variable charges.

Nonmetals form anions.


- Group 5A: charge = -3
- Group 6A: charge = -2
- Group 7A (halogens):
 charge = -1
- Group 8A (noble gases): charge =0 _{Ex Probs}


Naming Ionic Compounds with Polyatomic Ions

Ions can be simple (monatomic) or polyatomic.

• Simple Ions: Mg²⁺, Li⁺, Cl⁻, O²⁻

• Polyatomic lons:

 NH_4^+

NO₃

Naming Ionic Compounds with Polyatomic Ions

Names and charges of polyatomic ions must be memorized. (Memorize the following!)

- <u>Polyatomic cations</u>: Names end in -ium. NH_4^+ = ammonium H_3O^+ = hydronium
- <u>Polyatomic anions</u>: Many contain oxygen. $OH^- = hydroxide$ $CO_3^{2-} = carbonate$ $NO_3^- = nitrate$ $PO_4^{3-} = phosphate$ $SO_4^{2-} = sulfate$ $CN^- = cyanide$

Common Polyatomic Ions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 2.5 Common Polyatomic lons*		
Formula	Name	
Cations		
NH_4^+	ammonium	
H_3O^+	hydronium	
Anions		
CH ₃ COO ⁻	acetate	
(or $C_2H_3O_2^{-}$)		
CN^{-}	cyanide	
OH-	hydroxide	
ClO ⁻	hypochlorite	
ClO_2^-	chlorite	
ClO ₃ ⁻	chlorate	
ClO ₄ ⁻	perchlorate	
NO_2^-	nitrite	
NO_3^-	nitrate	
MnO ₄ ⁻	permanganate	
CO_{3}^{2-}	carbonate	
HCO ₃ ⁻	hydrogen carbonate	
	(or bicarbonate)	
CrO_4^{2-}	chromate	
$Cr_2O_7^{2-}O_2^{2-}$	dichromate	
O_2^{2-}	peroxide	
PO ₄ ³⁻	phosphate	
HPO_4^{2-}	hydrogen phosphate	
$H_2PO_4^-$	dihydrogen	
	phosphate	
SO_3^{2-}	sulfite	
SO_4^{2-}	sulfate	
HSO_4^-	hydrogen sulfate	
	(or bisulfate)	

*Boldface ions are most common.

Naming Ionic Compounds with Polyatomic Ions

Examples of ionic compounds with polyatomic ions

- NH₄Cl ammonium chloride
- Na₂CO₃ sodium carbonate
- Mn(OH)₂ manganese (II) hydroxide
- (NH₄)₂SO₄ ammonium sulfate

Naming Binary Molecular (Covalent) Compounds

NONMETAL + NONMETAL

Name first element first, second element second.

- First element: Greek prefix + parent element (Exception: Don't use "mono-").
- Second element: Greek prefix + parent element + "-ide" (as if it were an anion).

the second s	Prefixes Used to	
Indicate Numb Names	Indicate Numbers in Chemical	
Names		
Prefix	Number Indicated	
<i>mono-</i>	1	
di-	2	
tri-	3	
tetra-	4	
penta-	5	
hexa-	6	
hepta-	7	
octa-	8	

Naming Binary Covalent Compounds

Examples of Binary Molecular Compounds

- N₂O₅ dinitrogen pentoxide
- P₄O₆ tetraphosphorus hexoxide
- BF₃ boron trifluoride
- NO nitrogen monoxide
- CO carbon monoxide

Table 5.3Prefixes Used toIndicate Numbers in ChemicalNames	
Prefix	Number Indicated
<i>mono-</i>	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8

Naming Problem

Which of the following compounds is/are named incorrectly?

a) KNO_3 b) TiO_2 c) $Sn(OH)_4$ d) PBr_5 e) $CaCrO_4$

potassium nitrate titanium(II) oxide tin(IV) hydroxide phosphorus pentabromide calcium chromate

Strategy for Naming Compounds

Look at the formula.

<u>Metal + Nonmetal</u>

or

Polyatomic lons

IONIC Compound <u>Name as Cation + Anion!</u>

(If see variable-charge cation, include charge in Roman numerals!) Nonmetal + Nonmetal

MOLECULAR Compound <u>Use Greek prefixes!</u>

Ex probs

Writing Formulas

Writing Formulas

Writing Chemical Formulas: Ionic Compounds

I. Ionic Compounds

Balance charges, since compounds must be neutral!

Positive Charge + Negative Charge = 0

Examples

- magnesium bromide MgBr₂
- iron(II) sulfide FeS

Writing Chemical Formulas: Molecular Compounds

- II. Binary Molecular Compounds
 - Greek prefixes indicate number of atoms.

Examples

- dinitrogen pentoxide N₂0
- boron trifluoride

$$N_2O_5$$

BF₃

Greek Prefixes		
mono	one	
di	two	
tri	three	
tetra	four	

penta

hexa

five

six

Strategy for Writing Formulas of Compounds

Look at the name.

Metal + Nonmetal

or <u>Polyatomic Ions</u>

IONIC compound

Balance charges!

Nonmetal + Nonmetal

See Greek prefixes

COVALENT compound

Follow Greek prefixes!

Ex probs

Nomenclature for Acids

Nomenclature for Acids

Brief Intro to Acids and Bases

Arrhenius Definition of Acids and Bases

- Acid: a substance that makes proton (H⁺) in water.
 - $HCI \rightarrow H^+ + CI^-$
 - acid proton anion

 Base: a substance that makes <u>hydroxides (OH⁻)</u> in water.

 $NaOH \rightarrow Na^+ + OH^-$

Bronsted-Lowry Definition of Acids and Bases

- Acids are proton (H⁺) donors. HCl \rightarrow H⁺ + Cl⁻ acid proton anion
- Bases are proton (H⁺) acceptors. $NH_3 + H^+ \rightarrow NH_4^+$ base proton cation

Strong and Weak Acids

Strong acid: Completely ionized (dissociated).
 HCl(aq) → H⁺(aq) + Cl⁻(aq)

• Weak acid: Most of the acid molecules remain intact.

 $CH_3COOH(aq) \longrightarrow H^+(aq) + CH_3COO^-(aq)$ equilibrium arrow

Naming Acids

*Acids always have "H" first in their formulas! End all acid names with "acid."

1. Binary Acids:

Name format: "hydro-" + parent element

+ "-ic acid"

Acid	Name
HF	Hydrofluoric acid
HCl	Hydrochloric acid
HBr	Hydrobromic acid
HI	Hydroiodic acid
HCN	Hydrocyanic acid
H ₂ S	Hydrosulfuric acid

Naming Acids

2. Acid with oxygen (Oxyacids):

Acid name is derived from oxoanion of that acid.

- If anion ends in "ate" → acid name ends with "ic" acid.
 - NO_3^- is nitrate \rightarrow HNO₃ is <u>nitric</u> acid
- If anion of ends in "ite" → acid name ends with "ous" acid.
 - NO_2^- is nitrite \rightarrow HNO₂ is <u>nitrous</u> acid

Some Oxyacids

Acid	Name
HNO ₃	Nitric acid
HNO ₂	Nitrous acid
H_2SO_4	Sulfuric acid
H_2SO_3	Sulfurous acid
H_3PO_4	Phosphoric acid
$HC_2H_3O_2$	Acetic acid

Common Acids (Memorize!)

Strong Acids

- HCl hydrochloric acid
- HBr hyd
- HI hydroiodi
- HNO₃
- H₂SO₄
- HClO₄

- hydrochloric acid hydrobromic acid hydroiodic acid nitric acid sulfuric acid
- perchloric acid

Weak Acid

- $HC_2H_3O_2$ or CH_3COOH
- H₂CO₃

acetic acid carbonic acid