Chem 30A

Ch 6. Chemical Composition

cu e. cuGwics| cowborit!ou

The Mole

ı $\mu \mathrm{E}$ WolG

The Mole

- In laboratories, large numbers of atoms are used for experiments, so scientists made up a unit to avoid using very large numbers: mole (mol)
- The mole is a unit of measure:

$$
\begin{aligned}
& 1 \text { dozen }=12 \\
& 1 \text { gross }=144 \\
& 1 \text { mole }=\underline{6.02214 \times 10^{23}}
\end{aligned}
$$

Avogadro's number (N_{A})

1 dozen eggs = 12 eggs
1 mole eggs $=6.02214 \times 10^{23}$ eggs \rightarrow huge number!

The Mole

The mole is useful for counting atoms, molecules, and ions.

- 1 mol of ${ }^{12} \mathrm{C}$ atoms $=6.022 \times 10^{23}{ }^{12} \mathrm{C}$ atoms
- 1 mol of $\mathrm{H}_{2} \mathrm{O}$ molecules $=6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
- 1 mol of $\mathrm{NO}_{3}{ }^{-}$ions $=6.022 \times 10^{23} \mathrm{NO}_{3}{ }^{-}$ions

Converting Between Moles and \# of Particles

6.022×10^{23}
particles/mol

moles
number of particles
(Can be atoms, ions, or molecules)

Where Did Avogadro's Number Come From?

- It was measured!
- The value of the mole (Avogadro's number, N_{A}) is based on ${ }^{12} \mathrm{C}$ standard:
$\mathrm{N}_{\mathrm{A}}=$ the number of atoms in exactly 12 g of ${ }^{12} \mathrm{C}$

$$
=6.02214 \times 10^{23}
$$

So by definition: 1 mol of ${ }^{12} \mathrm{C}$ atoms has a mass of 12 g.

Relationship Between amu/atom and g/mole

- By defn: 1 atom of ${ }^{12} \mathrm{C}$ has a mass of 12 amu .
- By defn: 1 mole of ${ }^{12} \mathrm{C}$ has a mass of 12 g .
- So, mass of ${ }^{12} \mathrm{C}=$

$12 \frac{\mathrm{amu}}{\text { atom }}$ and	$12 \frac{\mathrm{~g}}{\mathrm{~mol}}$
atomic mass	molar mass

- Molar mass: the mass of one mole of a substance [g/mol]

Relationship Between Atomic Mass and Molar

Mass

$$
\begin{aligned}
1 \frac{\mathrm{amu}}{\text { atom }} & =1 \frac{\mathrm{~g}}{\mathrm{~mol}} \\
\# \text { atomic mass }[\mathrm{amu}] & =\text { \# molar mass [g] }
\end{aligned}
$$

Because the atomic masses of all other elements are relative to atomic mass of ${ }^{12} \mathrm{C}$, this relationship between atomic mass and molar mass is true for every element.

Atomic Mass [amu] = Molar Mass [g]

Substance	Atomic Mass	Molar Mass
C	$12.01 \mathrm{amu} /$ atom	$12.01 \mathrm{~g} / \mathrm{mol}$
Mg	$24.30 \mathrm{amu} /$ atom	$24.30 \mathrm{~g} / \mathrm{mol}$
O	$16.00 \mathrm{amu} /$ atom	$16.00 \mathrm{~g} / \mathrm{mol}$
Ag	$107.87 \mathrm{amu} /$ atom	$107.87 \mathrm{~g} / \mathrm{mol}$
He	$4.00 \mathrm{amu} /$ atom	$4.00 \mathrm{~g} / \mathrm{mol}$

Now we know the molar mass of an atom by looking at the periodic table!

Similarly, for molecules: formula mass [amu] = molar mass [g]

Converting Between Moles and Mass

We can use the molar mass ($\mathrm{g} / \mathrm{mol}$) to convert between the moles of particles and the mass (in g) of a substance:
($\mathrm{g} / \mathrm{mol}$)
grams of sample
moles of
sample

Grams-Moles-Number of Particles Conversions

Amounts of an Element in a Compound

Chemical Formulas as Conversion Factors

- Find moles element in given moles of compound.
- How many moles of carbon are in 0.245 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
- Find grams of element in given grams of compound.
- How many grams of carbon are in 1.50 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
*Must go through mole relationship: $\frac{\text { mol of element }}{\text { mol of compound }}$

Mass Percent Composition of Compounds

colubonuqe

 wser belceuf cowboriflou ot
Mass Percent Composition

- Mass fraction of an element in a compound =
mass of an element
mass of compound in a sample of compound
- Mass percent $=$ mass fraction $\times 100$
- Mass percent of an element in a compound = mass of an element in compound sample x 100 mass of a compound in compound sample

Mass Percent from Chemical Formula

- Mass fraction of an element in a compound $=$ mass of an element mass of compound in 1 mole of compound
- Mass percent $=$ mass fraction $\times 100$
- Mass percent of an element in a compound $=$ mass of an element in 1 mol of compound $\quad \times 100$ mass of 1 mol of compound

Mass Percent of an Element in a Compound

Mass of element and Mass of compound in a
Given sample
Mass \% of element In Compound

Chemical
Formula

