Chem 30A

Ch 6. Chemical Composition

Ch 6. Chemical Composition

The Mole

- In laboratories, large numbers of atoms are used for experiments, so scientists made up a unit to avoid using very large numbers: mole (mol)
- The mole is a unit of measure:
 - 1 dozen = 12
 - 1 gross = 144
 - $1 \text{ mole} = 6.02214 \times 10^{23}$

1 dozen eggs = 12 eggs 1 mole eggs = 6.02214×10^{23} eggs \rightarrow huge number!

The Mole

The mole is useful for counting atoms, molecules, and ions.

- 1 mol of ¹²C atoms = 6.022 x 10²³ ¹²C atoms
- 1 mol of H_2O molecules = 6.022 x 10^{23} H_2O molecules
- 1 mol of NO_3^- ions = 6.022 x $10^{23} NO_3^-$ ions

Converting Between Moles and # of Particles

6.022x10²³ particles/mol moles number of particles

(Can be atoms, ions, or molecules)

Ex Probs

Where Did Avogadro's Number Come From?

- It was measured!
- The value of the mole (Avogadro's number, N_A) is based on ¹²C standard:

 N_A = the number of atoms in exactly 12 g of ¹²C = 6.02214 x 10²³

So by definition: 1 mol of ¹²C atoms has a mass of 12 g.

Relationship Between amu/atom and g/mole

- By defn: 1 atom of ¹²C has a mass of 12 amu.
- By defn: 1 mole of ¹²C has a mass of 12 g.
- So, mass of ¹²C =

12	amu	and	12	g
	atom			mol
atomic mass			molar mass	

 Molar mass: the mass of one mole of a substance [g/mol]

Relationship Between Atomic Mass and Molar Mass

atomic mass [amu] = # molar mass [g]

Because the atomic masses of all other elements are relative to atomic mass of ¹²C, this relationship between atomic mass and molar mass is true for every element.

Atomic Mass [amu] = Molar Mass [g]

Substance	Atomic Mass	Molar Mass
С	12.01 amu/atom	12.01 g/mol
Mg	24.30 amu/atom	24.30 g/mol
0	16.00 amu/atom	16.00 g/mol
Ag	107.87 amu/atom	107.87 g/mol
Не	4.00 amu/atom	4.00 g/mol

Now we know the molar mass of an atom by looking at the periodic table!

Similarly, for <u>molecules</u>: formula mass [amu] = molar mass [g] We can use the molar mass (g/mol) to convert between the moles of particles and the mass (in g) of a substance:

Grams-Moles-Number of Particles Conversions

Ex Probs

Amounts of an Element in a Compound

Chemical Formulas as Conversion Factors

- Find moles element in given moles of compound.
 - How many moles of carbon are in 0.245 mole of $C_6H_{12}O_6$?
- Find grams of element in given grams of compound.
 - How many grams of carbon are in 1.50 g of $C_6H_{12}O_6$?

*Must go through mole relationship: <u>mol of element</u> mol of compound

Mass Percent Composition of Compounds

Mass Percent Composition of Compounds

Mass Percent Composition

• Mass fraction of an element in a compound =

mass of an elementmass of compoundin a sample of compound

- Mass percent = mass fraction x 100
- Mass percent of an element in a compound = <u>mass of an element in compound sample</u> x 100 mass of a compound in compound sample

Mass Percent from Chemical Formula

• Mass fraction of an element in a compound =

mass of an elementmass of compoundin 1 mole of compound

- Mass percent = mass fraction x 100
- Mass percent of an element in a compound = <u>mass of an element in 1 mol of compound</u> x 100 mass of 1 mol of compound

Mass Percent of an Element in a Compound

Mass of element and Mass of compound in a Given sample

Mass % of element In Compound

Chemical Formula

