Chemical Nomenclature # **Naming Compounds** #### I. Ionic Compounds **General Rule**: Name the cation first, anion second. *If cation can have variable charges, remember to specify charge in (Roman numerals) after the name of cation. ## A. Binary Ionic Compounds: METAL + NONMETAL - 1. Cation (Metal) - a) Monatomic metal cations with fixed charge (mostly main group metals) have same name as the element. Eg. Na^+ = sodium ion Ca^{2+} = calcium ion b) <u>Monatomic metal cations with variable charges</u> (mostly transition metals) have name of element *followed by a Roman numeral in parentheses to indicate charge.* Eg. $$Cu^+ = copper(I)$$ $Cu^{2+} = copper(II)$ 2. Anion (Nonmetal) Monatomic anions have name of element followed by -ide. $\begin{array}{lll} F^-=& \text{fluoride} & O^{2-}=& \text{oxide} \\ Cl^-=& \text{chloride} & S^{2-}=& \text{sulfide} \\ Br^-=& \text{bromide} & N^{3-}=& \text{nitride} \\ I^-=& \text{iodide} & H^-=& \text{hydride} \\ \end{array}$ # **Examples of Binary Ionic Compounds** KCl potassium chloride CuBr copper (I) bromide MgBr₂ magnesium bromide PbO₂ lead (IV) oxide ## *Memorize the following Common Ion Charges! ### **B. Polyatomic Ionic Compounds:** Contain polyatomic ion as the cation, anion, or both. ### *Memorize the following names and charges of polyatomic ions! 1. Polyatomic cations: Names end in -ium. NH_4^+ = ammonium H_3O^+ = hydronium 2. Polyatomic anions: Many contain oxygen. OH^- = hydroxide NO_{2^-} = nitrate CO_3^{2-} = carbonate NO_3^- = nitrate PO_4^{3-} = phosphate SO_4^{2-} = sulfate CN-= cyanide ## **Examples of Polyatomic Ionic Compounds** NH₄Cl ammonium chloride Mn(OH)₂ manganese (II) hydroxide Na₂CO₃ sodium carbonate I)₂ manganese (II) hydroxide $(NH_4)_2SO_4$ ammonium sulfate ## A List of Some Polyatomic Ions #### **Cations** Ammonium = NH_4 ⁺ $Mercury(I) = Hg_2^{2+}$ #### **Anions** Acetate = $C_2H_3O_2^-$ or CH_3COO^- Thiosulfate = $S_2O_3^{2-}$ Cyanide = CN⁻ Hydroxide = OH- Phosphate = PO_4^{3} Carbonate = CO_3^{2-} Perchlorate = ClO_4 ⁻ Chlorate = ClO_3 ⁻ Hydrogen Carbonate (bicarbonate) = HCO₃- Hypochlorite = ClO Nitrate = NO_3 Nitrite = NO_2 Chromate = CrO_4^{2-} Sulfate = SO_4^{2-} Sulfite = SO_3^{2-} Permanganate = MnO_4 Dichromate = $Cr_2O_7^{2-}$ Hydrogen Sulfate (bisulfate) = HSO₄- # II. Molecular Compounds (Binary): NONMETAL + NONMETAL **General Rules:** Name first element first, second element second. - 1. First element: Greek prefix + parent element (Exception: Don't use "mono-"). - 2. Second element: Greek prefix + parent element + "-ide" (as if it were an anion). # **Examples of Binary Molecular Compounds** N₂O₅ dinitrogen pentoxide P₄O₆ tetraphosphorus hexoxide BF₃ boron trifluoride NO nitrogen monoxide CO carbon monoxide | Greek Prefixes | | | |----------------|-------|--| | mono | one | | | di | two | | | tri | three | | | tetra | four | | | penta | five | | | hexa | six | | | hepta | seven | | | octa | eight | | Chem 30A Kim #### III. Acids 1. **Binary acids:** "hydro" + parent element + "ic acid" HCl hydrochloric acid HBr hydrobromic acid 2. **Oxoacids**: Names are derived from oxoanions. If oxoanion name ends with –ate, then acid name ends with –ic acid. eg. NO_3 is nitirite \rightarrow HNO₃ is nitric acid If oxoanion name ends with -ite, then acid name ends with -ous acid. eg. NO_2 - is nitrite \rightarrow HNO_2 is nitrous acid. | *Memorize the following common acids! | | | | |---------------------------------------|-------------------|---|---------------| | Strong Ac | <u>rids</u> | Weak Acids | | | HCl | hydrochloric acid | HC ₂ H ₃ O ₂ or CH ₃ COOH | acetic acid | | HBr | hydrobromic acid | H_2CO_3 | carbonic acid | | HI | hydroiodic acid | | | | HNO ₃ | nitric acid | | | | H ₂ SO ₄ | sulfuric acid | | | | HClO ₄ | perchloric acid | | | # **Writing Formulas** ## **I. Ionic Compounds** Balance charges, since compounds must be neutral! (Principle of Electrical Neutrality) Positive Charge + Negative Charge = 0 eg., magnesium bromide = MgBr₂ iron(II) sulfide = FeS #### II. Molecular Compounds (Binary) Greek prefixes indicate number of atoms. eg., dinitrogen pentoxide = N_2O_5 boron trifluoride = BF_3