Chemical Nomenclature

Naming Compounds

I. Ionic Compounds

General Rule: Name the cation first, anion second.

*If cation can have variable charges, remember to specify charge in (Roman numerals) after the name of cation.

A. Binary Ionic Compounds: METAL + NONMETAL

- 1. Cation (Metal)
 - a) Monatomic metal cations with fixed charge (mostly main group metals) have same name as the element.

Eg. Na^+ = sodium ion

 Ca^{2+} = calcium ion

b) <u>Monatomic metal cations with variable charges</u> (mostly transition metals) have name of element *followed by a Roman numeral in parentheses to indicate charge.*

Eg.
$$Cu^+ = copper(I)$$

 $Cu^{2+} = copper(II)$

2. Anion (Nonmetal)

Monatomic anions have name of element followed by -ide.

 $\begin{array}{lll} F^-=& \text{fluoride} & O^{2-}=& \text{oxide} \\ Cl^-=& \text{chloride} & S^{2-}=& \text{sulfide} \\ Br^-=& \text{bromide} & N^{3-}=& \text{nitride} \\ I^-=& \text{iodide} & H^-=& \text{hydride} \\ \end{array}$

Examples of Binary Ionic Compounds

KCl potassium chloride CuBr copper (I) bromide MgBr₂ magnesium bromide PbO₂ lead (IV) oxide

*Memorize the following Common Ion Charges!

B. Polyatomic Ionic Compounds: Contain polyatomic ion as the cation, anion, or both.

*Memorize the following names and charges of polyatomic ions!

1. Polyatomic cations: Names end in -ium.

 NH_4^+ = ammonium

 H_3O^+ = hydronium

2. Polyatomic anions: Many contain oxygen.

 OH^- = hydroxide NO_{2^-} = nitrate CO_3^{2-} = carbonate

 NO_3^- = nitrate

 PO_4^{3-} = phosphate

 SO_4^{2-} = sulfate

CN-= cyanide

Examples of Polyatomic Ionic Compounds

NH₄Cl ammonium chloride Mn(OH)₂ manganese (II) hydroxide Na₂CO₃ sodium carbonate

I)₂ manganese (II) hydroxide $(NH_4)_2SO_4$ ammonium sulfate

A List of Some Polyatomic Ions

Cations

Ammonium = NH_4 ⁺

 $Mercury(I) = Hg_2^{2+}$

Anions

Acetate = $C_2H_3O_2^-$ or CH_3COO^-

Thiosulfate = $S_2O_3^{2-}$

Cyanide = CN⁻

Hydroxide = OH-

Phosphate = PO_4^{3}

Carbonate = CO_3^{2-}

Perchlorate = ClO_4 ⁻ Chlorate = ClO_3 ⁻

Hydrogen Carbonate (bicarbonate) = HCO₃-

Hypochlorite = ClO

Nitrate = NO_3

Nitrite = NO_2

Chromate = CrO_4^{2-}

Sulfate = SO_4^{2-}

Sulfite = SO_3^{2-}

Permanganate = MnO_4

Dichromate = $Cr_2O_7^{2-}$

Hydrogen Sulfate (bisulfate) = HSO₄-

II. Molecular Compounds (Binary): NONMETAL + NONMETAL

General Rules: Name first element first, second element second.

- 1. First element: Greek prefix + parent element (Exception: Don't use "mono-").
- 2. Second element: Greek prefix + parent element + "-ide" (as if it were an anion).

Examples of Binary Molecular Compounds

N₂O₅ dinitrogen pentoxide P₄O₆ tetraphosphorus hexoxide

BF₃ boron trifluoride NO nitrogen monoxide CO carbon monoxide

Greek Prefixes		
mono	one	
di	two	
tri	three	
tetra	four	
penta	five	
hexa	six	
hepta	seven	
octa	eight	

Chem 30A Kim

III. Acids

1. **Binary acids:** "hydro" + parent element + "ic acid"

HCl hydrochloric acid HBr hydrobromic acid

2. **Oxoacids**: Names are derived from oxoanions.

If oxoanion name ends with –ate, then acid name ends with –ic acid.

eg. NO_3 is nitirite \rightarrow HNO₃ is nitric acid

If oxoanion name ends with -ite, then acid name ends with -ous acid.

eg. NO_2 - is nitrite \rightarrow HNO_2 is nitrous acid.

*Memorize the following common acids!			
Strong Ac	<u>rids</u>	Weak Acids	
HCl	hydrochloric acid	HC ₂ H ₃ O ₂ or CH ₃ COOH	acetic acid
HBr	hydrobromic acid	H_2CO_3	carbonic acid
HI	hydroiodic acid		
HNO ₃	nitric acid		
H ₂ SO ₄	sulfuric acid		
HClO ₄	perchloric acid		

Writing Formulas

I. Ionic Compounds

Balance charges, since compounds must be neutral! (Principle of Electrical Neutrality) Positive Charge + Negative Charge = 0

eg., magnesium bromide = MgBr₂

iron(II) sulfide = FeS

II. Molecular Compounds (Binary)

Greek prefixes indicate number of atoms.

eg., dinitrogen pentoxide = N_2O_5 boron trifluoride = BF_3