Chpt 11. Gases

- 1. Units of pressure: Be able to convert between different units of pressure. Know standard atmospheric pressure = 1 atm = 760 mmHg = 760 torr.
- 2. Know basic assumptions of the Kinetic Molecular Theory, and that avg kinetic energy \propto T (Kelvin).
- 3. Understand the simple gas laws through Kinetic Molecular Theory:
 - a. The relationship between V and P is inverse (V $\propto 1/P$ when T, n fixed: Boyles Law)
 - b. The relationship between V and T is direct (V \propto T, when P, n fixed: Charles's Law)
 - c. The relationship between V and n is direct ($V \propto n$, when P, T fixed: Avogadro's Law)
- 4. Use "useful forms" of gas laws to calculate new values of P, V, and/or T, when gas state changes.
 - a. $P_1V_1 = P_2V_2$
 - b. $V_1/T_1 = V_2/T_2$
 - c. $P_1V_1/T_1 = P_2V_2/T_2$ (Combined Gas Law: This law can used in place of a and b above.) d. $V_1/n_1 = V_2/n_2$
- 5. Use the ideal gas equation **PV = nRT** to calculate any one of the gas properties, given values of the other three. (Given on exam: R = 0.0821 L-atm/mol-K)
- 6. Gas mixtures
 - a. Partial pressure: pressure contributed by a gas in a mixture to the total pressure of the mixture
 - **b.** Know that total pressure of a mixture of gases is equal to the sum of the partial pressure of the component gases: $P_{Tot} = P_1 + P_2 + P_3 + ...$ (Dalton's Law of Partial Pressures)
 - c. Know that partial pressure of gas 1 is equal to its molar fraction times the total pressure: $P_1 = X_1 P_{Tot}$ (X₁ = molar fraction of gas 1)
 - **d.** Thus: $P_{Tot} = X_1 P_{Tot} + X_2 P_{Tot} + X_2 P_{Tot} + ...$

Memorize

- 1. 1 atm = 760 mmHg = 760 torr
- 2. Gas Laws:
 - a. Relationship between V and P is inverse (V $\propto 1/P$)
 - b. Relationship between V and T is direct $(V \propto T)$
 - c. Relationship between V and n is direct $(V \propto n)$
- 3. "Useful forms" of gas laws:
 - a. $P_1V_1 = P_2V_2$
 - b. $V_1/T_1 = V_2/T_2$
 - c. $P_1V_1/T_1 = P_2V_2/T_2$ (Combined Gas Law: This law can memorized instead of a and b above.)
 - d. $V_1/n_1 = V_2/n_2$
- 4. Ideal Gas Equation: **PV = nRT**
- 5. $P_{Tot} = P_1 + P_2 + P_2 + \dots$
- 6. $P_1 = X_1 P_{Tot}$ (X₁ = molar fraction of gas 1)
- 7. K = °C + 273 (Temperature must be in Kelvin when calculating gas problems!)

Chpt 12. Liquids, Solids, and Intermolecular Forces

1. Intermolecular forces

- a. Understand that physical state of matter (gas, liquid, solid) depends primarily on the magnitude of intermolecular forces (attractive forces between molecules).
- b. Distinguish between <u>inter</u>molecular force and <u>intra</u>molecular force (chemical bond).
- c. Know the three types of intermolecular forces: dipole-dipole, hydrogen bonding, and London dispersion. Know their relative strengths, and that all three are weaker than chemical bonds.
- d. State the types of intermolecular forces available to a given substance.

- i. Must be able to determine whether a molecule is polar (a dipole) or nonpolar.
- ii. If molecule is polar, it has dipole-dipole force.
- iii. If the polar molecule also has a hydrogen atom on a highly electronegative atom (N, O, F), it can do hydrogen-bonding.
- iv. London dispersion force is available to all molecules and atoms. However, it is the <u>only</u> intermolecular force available to nonpolar molecules. London dispersion force increases with increasing molar mass and surface area of molecule.
- e. Predict relative boiling points of substances based on intermolecular forces: Greater the total magnitude of intermolecular forces of a molecule, higher the boiling point of the molecule.
- 2. Phase changes
 - a) Know definitions of melting (fusion), freezing, vaporization, condensation, sublimation, and deposition. Know whether each process is endothermic or exothermic, and its sign of enthalpy change (Δ H).
 - b) Heating Curve
 - i. Identify melting point, boiling point
 - ii. Know what is happening on molecular basis at difference regions of a heating curve: (1) Within a single phase: Temperature is changing with added heat, as heat is increasing average kinetic energy of particles (making particles move faster); (2)<u>phase change</u>: Temperature is <u>not</u> changing with added heat, as the heat is breaking the intermolecular forces.
 - iii. Know definitions for these heats:
 - Heat of fusion (ΔH_{fusion}): quantity of heat required to completely melt one mole of a substance once it has reached its melting point
 - Heat of vaporization ($\Delta H_{vaporization}$): quantity of heat required to completely vaporize one mole of a liquid once it has reached its boiling point.
 - iv. Calculate heat involved in phase changes between solid and liquid using the equation $q = moles \times \Delta H_{fusion}$.
 - v. Calculate heat involved in phase changes between liquid and gas using the equation q = moles x $\Delta H_{vaporization.}$
- 3. Identify the three types of crystalline solids: molecular, ionic, and atomic.

Memorize

- $q = moles \times \Delta H_{fusion}$.
- $q = moles \times \Delta H_{vaporization}$

Chpt 13. Solutions

- 1. Know the difference between saturated, unsaturated, and supersaturated solutions.
- 2. Predict whether two substances can make a solution (one can dissolve the other) based on the "Like dissolves like" principle: Substances with similar intermolecular forces form solutions with one another. Polar solvents dissolve polar and ionic solutes. Nonpolar solvents dissolve nonpolar solutes.
- 3. Do calculations using expressions for concentration:
 - i. Mass percent = (mass of solute/mass of solution) x 100
 - ii. Molarity (M) = mols solute/L solution
 - Calculate molarity, moles of solute, solution volume, or **grams of solute** given relevant information.
 - Know how to make standard solutions of given concentration and volume.
- 4. Know how to make dilutions using $M_cV_c = M_dV_d$ equation.
- 5. Know how to calculate ion concentrations from concentration of ionic compound.
- 6. Osmosis

- a) Know definition of osmosis.
- b) Know definitions of isotonic, hypertonic, and hypotonic solutions, and their effect on cells, which have semipermeable membranes.

Memorize

- 1. Mass percent = (mass of solute/mass of solution) x 100
- 2. Molarity M = mols solute/L solution

Chpt 14. Acids and Bases

- 1. Recognize acids and bases from chemical formulas.
- 2. Conjugate acid-base pairs:
 - a. Write chemical formula for conjugate base given an acid, and conjugate acid given a base.
 - b. Given equation for an acid-base reaction, identify acid, base, conjugate base, conjugate acid.
- 3. Do solution stoichiometry problems for acid-base reactions (acid-base titration problems).
- 4. Recognize common strong and weak acids, and strong and weak bases (need to memorize).
- 5. Calculate pH, pOH, [H₃O⁺], and/or [OH⁻] using following equations:
 - a. $pH = -\log[H^+]$ and $pOH = -\log[OH^-]$
 - b. Inv log $[-pH] = [H^+]$ and Inv log $[-pOH] = [OH^-]$
 - c. $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ (ion product constant of water)
 - d. 14.00 = pH + pOH
- 6. Understand the relationship among pH, relative [H₃O+] and [OH-] values, and acidity (Know table!)

рН	[H+] and [OH-]	Acidity
pH 7	[H+] = [OH-]	Neutral
pH < 7	[H ⁺] > [OH ⁻]	Acidic
pH > 7	[H+] < [OH-]	Basic

Memorize 1. List of common acids and bases.		
Strong Acids HCl HBr HI HNO ₃ H ₂ SO ₄ HClO ₄	<u>Strong Bases</u> Metal Hydroxides of: Group 1A cations [LiOH, NaOH, KOH, etc.] <i>and</i> Heavier Group 2A cations [Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂]	
$\frac{Common Weak Acids}{HC_2H_3O_2 or CH_3COOH} H_2CO_3 \qquad carbonic acid$	<u>Common Weak Base</u> NH ₃ ammonia	
2. pH = $-\log[H^+]$ and pOH = $-\log[OH^-]$ 3. Inv log [-pH]= [H ⁺] and Inv log [-pOH]= [OH ⁻] 4. K _w = [H ₃ O ⁺][OH ⁻] = 1.0×10^{-14} 5. 14.00 = pH + pOH		