Name

\qquad

1. (6). The dimensions of a block of pure iron $\left(\mathrm{d}=7.86 \mathrm{~g} / \mathrm{cm}^{3}\right)$ are $11.0 \mathrm{~cm} \times 7.3 \mathrm{~cm} \times 243.9 \mathrm{~cm}$.
a. What is the volume of the block?

$$
\begin{aligned}
& \text { What is the volume of the block? } \\
& V=(11.0 \times 7.3 \times 243.9) \mathrm{cm}^{3}=1.96 \times 10^{4} \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. What is the mass of the block? } \\
& d=\frac{m}{v_{1}} ; m=d v=(7,86)\left(g / \mathrm{cm}^{3}\right)(11.0 \times 7.3 \times 243.9) \mathrm{dm}^{3}
\end{aligned}
$$

2. (6). How many protons 28 , electrons 28 and neutrons 30 are present in an atom of the mass 58 isotope of nickel (Ni)?
3. (3). Express the following number in scientific notation: 0.0061740 .

$$
6.1740 \times 10^{-3}
$$

4. (3). How many significant figures appear in the number, 0.0061740 ?

$$
5
$$

5. (5). Write the e-configuration of Mn , using $1 \mathrm{~s}^{2}$ etc notation.

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}
$$

6. (6). For each of the following atoms, state the number of valence electrons and write the electron-dot formula for the atom:
N 5
SNO

$$
\mathrm{Si} 4 \quad-5 i o
$$

7. (3). One of the following is not an ionic compound. Circle it. $\mathrm{AlF}_{3} \mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{CaO}\right.$
8. (3). How many valence electrons are present in the carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$?

$$
4+3 \times 6+2=24
$$

Name

9. (6). What is the most likely formula of the sulfide of Li? The oxide of Al?

$$
\mathrm{Li}_{2} \mathrm{~S} \quad \mathrm{Al}_{2} \mathrm{O}_{3}
$$

10. (4). Write the e-configuration of the Cr^{+3} ion using arrow notation.
11. (3). The $\mathrm{Al}^{3^{+}}$ion has the same e-configuration as which noble gas?

$$
\mathrm{Ne}
$$

12. (3). Given that 1 in $=2.54 \mathrm{~cm}$, what is the number of feet in one meter? (In other words, calculate feet/ meter).

$$
\operatorname{lin} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{100 \mathrm{~cm}}{\mathrm{~m}}=3.28 \mathrm{bt} / \mathrm{m}
$$

13. (6). Using VSEPR theory, predict the geometric shapes of each of the following molecules (start by drawing the Lewis octet structure):
a. NH_{3}

$$
\text { Hen }_{H} \text { pyramidal }
$$

b. CO_{2}

$$
\because \because=c=0 \quad \text { linear }
$$

14. (8). Draw the Lewis structure - showing all valence electrons - of phosphorus oxychloride, POCl_{3}. (P is the central atom). Start by determining the number of valence electrons.
15. (9). Hydrogen chloride (HCl) is a gas that dissolves in water to give H^{+}ions (more correctly, $\mathrm{H}_{3} \mathrm{O}^{+}$ions) and Cl^{-}ions, generating considerable heat in the process. Is this a chemical change or a physical change \qquad ? Is the resulting solution homogeneous $थ$ or heterogeneous \qquad ? Is the resulting solution acidic \qquad , basic \qquad or neutral \qquad ?

Name
16. (5). Given that $(9 / 5) \mathrm{C}+32=\mathrm{F}$, what is the temperature in degrees F when it is 10.0 degrees Celsius? What is this temperature in Kelvins (K)?
$\left(\frac{9}{5}\right)(10)+32=50^{\circ} \mathrm{C}$ $\begin{array}{r}50 \\ 273 \\ \hline 323 K\end{array}$
17. (5). Calculate the specific heat of copper if it takes 23 cal to heat a 5.0 g sample from $25^{\circ} \mathrm{C}$ to 75 ${ }^{\circ} \mathrm{C}$. (Caution: significant figures!).

$$
S(\mathrm{Cu})=\frac{23}{50 \times 5.0} \frac{\mathrm{cal}}{\operatorname{deq}-9}=\frac{0.46}{5}=0.092 \mathrm{cal} / \mathrm{q}-\text { deg } .
$$

18. (3) Group 1A metals easily gain an electron. True \qquad or false V.
19. (3) In the NaCl crystal lattice, each sodium ion has how many nearest-neighbor choride ions 6?
20. (4) The 'old' name for MnO_{2} was manganese dioxide. An incorrectly written 'new' name is manganese(II) oxide. Give the correct 'new' name.
manganese (IV) oxide
21. (3). Given that the electronegativities of H, C and O are $2.1,2.5$, and 3.0 , which molecular bond is more polar, C-H \qquad or $\mathrm{O}-\mathrm{H}$ \qquad ?
22. (3). The maximum number of covalent bonds that nitrogen can form is 4. However phosphorus, which is also in Group 5A, can form 5 covalent bonds. What does phosphorus have that are not available to nitrogen? empty 3 d orbitals
