Chemistry 30A Dr Schaleger

Name

1. (8). Write the formula and proper name for the compounds containing the following ions:

Ions	Formula of Compound	Name of Compound
${\rm Fe}^{3+}$ and ${\rm SO}_4^{2-}$	$Fe_2(504)_3$	iron (III) sulfate
Mn^{4+} and O^{2-}	Mn O2	manganese (IV) oxide

- 2. (6). Give each of the following compounds a proper name.
 - a. Cr2O3' chromium (III) oxide
 - b. CrO3 chromium (VI) oxide
- 3. (4). Calcium carbonate is a slightly soluble salt: $CaCO_3(s) = Ca^{2+}(aq) + CO_3^{2-}(aq)$. The equilibrium expression for the solubility product (sp) is given as $K_{sp} = [Ca^{2+}][CO_3^{2-}]$.

If a few crystals of Na₂CO₃ are dissolved in a suspension of CaCO₃ in water, how will the concentration of Ca²⁺ be affected? No effect____; Ca²⁺ concentration increases____; Ca²⁺ concentrations decreases \checkmark .

4. (12). Complete and balance the following reactions. If no reaction, write NR.

$$NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl(s)$$

 $Ba(NO_3)_2(aq) + 2HCl(aq) \rightarrow NR$

 $2 \operatorname{NaOH}(aq) + H_2 SO_4(aq) \rightarrow Na_2 SO_4 + 2 HOH$

Chemistry 30A Dr Schaleger Midterm Exam #2

Name

5. (9). Write the balanced molecular, total ionic and net ionic equations for the reaction:

 $2 \operatorname{Mn}(\operatorname{NO}_{3})_{3}(\operatorname{aq}) + 3 \operatorname{Na}_{2}S(\operatorname{aq}) \rightarrow \operatorname{Mn}_{2}S_{3}(\operatorname{s}) + 6 \operatorname{Na}\operatorname{NO}_{3}(\operatorname{aq})$ $2 \operatorname{Mn}_{a_{f}}^{3+} + 3 \operatorname{NO}_{3}^{-} + 6 \operatorname{Na}_{a_{f}}^{+} + 3 \operatorname{S}_{a_{f}}^{2-} \longrightarrow \operatorname{Mn}_{2}S_{3}(\operatorname{s}) + 6 \operatorname{Na}_{a_{f}}^{+} + 6 \operatorname{NO}_{3}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{Mn}_{2}S_{3}(\operatorname{s}) + 6 \operatorname{Na}_{a_{f}}^{+} + 6 \operatorname{NO}_{3}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{Mn}_{2}S_{3}(\operatorname{s}) + 6 \operatorname{Na}_{a_{f}}^{+} + 6 \operatorname{NO}_{3}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{Mn}_{2}S_{3}(\operatorname{s}) + 6 \operatorname{Na}_{a_{f}}^{+} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{Mn}_{2}S_{3}(\operatorname{s}) + 6 \operatorname{Na}_{a_{f}}^{+} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{-} \operatorname{Mn}_{2}S_{3}(\operatorname{s}) + 6 \operatorname{Na}_{a_{f}}^{+} \operatorname{A}_{a_{f}}^{-} \operatorname{A}_{a_{f}}^{$

6. (10). Copper dissolves in concentrated nitric acid according to the following process.

 $Cu(s) + 4 HNO_3(aq) \rightarrow 2 NO_2(g) + 2 H_2O(l) + Cu(NO_3)_2(aq)$

a. What mass (in grams) of copper is required to produce 2.00 moles of copper(II) nitrate?

2×65 = 130g.

b. How many moles of nitric acid are required to react exactly with 0.40 moles of copper?

$$\frac{4 \text{ moles HNO_3}}{1 \text{ mole Cu}} = \frac{x \text{ moles HNO_3}}{0.40 \text{ moles Cu}}$$

$$\chi = \frac{(4 \text{ moles HNO_3})(0.40 \text{ moles Cu})}{1 \text{ moles Cu}} = 1.6 \text{ moles HNO_3}$$

Name

7. (6). Two curves are shown in the following energy diagram. Which curve represents the

8. (4). Consider the following gas phase reaction: $3 H_2(g) + N_2(g) \rightarrow 2 NH_3(g)$. Write the equation for the equilibrium constant.

$$K = \frac{\left[NH_3\right]^2}{\left[H_2\right]^3\left[N_2\right]}$$

9. (4). What is the oxidation number of Cr in $K_2Cr_2O_7$?

$$+6$$

10. (4). Circle the oxidizing agent in the following reaction:

H₂O(l)
$$(Cl_2(aq))$$
 HCHO(aq) \rightarrow HCOOH(aq) + 2 HCl(aq)

Name

11. (12). Estimate the energy of the following reaction, given these bond dissociation energies (kcal/mol): C-H = 99; Cl-Cl = 58; C-Cl = 81; H-Cl = 102.

CH₄ + Cl₂ \rightarrow CH₃Cl + HCl <u>Bonds Broken</u> 4 C-H: $4 \times 99 = 396$ Cl-Cl: <u>58</u> 454 $4 \times 99 = -297$ -480AH = 454 - 480 = -26 kcal/mol

According to your calculation, is this reaction exothermic \checkmark or endothermic _____.

12. (10). Consider the following reaction:

 $CH_3Br + Br_2 \rightarrow CH_2Br_2 + HBr$

If 50 grams of CH_3Br are reacted with 100 grams of Br_2 , what is the theoretical yield of CH_2Br_2 product? (Hint: Which is the limiting reagent?).

Name_

13. (8). What are the signs (+ or –) of Δ H, Δ S and Δ G for the melting of ice at 20 deg C?

(The melting point of ice is 0 deg C).

 $H_2O(s) \rightarrow H_2O(l)$

 $\Delta H \pm; \Delta S \pm; \Delta G =$. Is this process spontaneous? Ves; No.

14. (6). Based on your knowledge of the periodic table, do you think the following reaction is spontaneous_____?

 $Ca(s) + Cu(NO_3)_2(aq) \rightarrow Ca(NO_3)_2(aq) + Cu(s)$

How would you classify this reaction? **Circle** all that apply.

Single displacement. Double displacement. Precipitation. (Redox.) Neutralization.