1. The density of a block of metal is $2.56 \mathrm{~g} \mathrm{~cm}^{-3}$. It weighs 121.5 g . What is its volume?
2. When vinegar (dilute aqueous acetic acid) is added to sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$, a gas is given off. What is it?
3. What are the ions found in an aqueous solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$?
4. Double displacement: complete and balance the following reaction. If there is no reaction, simply write NR after the arrow. (See solubility rules).

$$
\mathrm{CaCl}_{2}+\mathrm{AgNO}_{3} \rightarrow
$$

5. Write the net ionic equation for the following balanced reaction:
$\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{CdS}(\mathrm{s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
6. Balance the following reaction involving ions in aqueous solution.

$$
\mathrm{Ti}^{2+}+\mathrm{Mn}^{7+} \rightarrow \mathrm{Ti}^{2+}+\mathrm{Mn}^{2+}
$$

7. A motorist drives 75.0 miles from Bemidji to Alexandria (obviously he is in Minnesota) in an auto that gets 21.3 miles per gallon of gasoline. If the price of gasoline is $\$ 3.59$ per gallon, how much did the trip cost him?
8. A principal component of gasoline is benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. Complete and balance the equation for the combustion of benzene.
9. During the combustion of 20.00 g of benzene, 2100 kcal of heat is released. What is the heat of combustion of benzene in units of $\mathrm{kcal} /$ mole?
10. What is the oxidation number of chlorine in HClO_{3} ?
11. The equilibrium constant, Ksp , for the following slightly soluble salt, BaSO_{4}, is given as $\mathrm{Ksp}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=2.4 \times 10^{-4}$ (concentrations are given as moles/L)

What is the concentration of Ba^{2+} if the concentration of $\mathrm{SO}_{4}{ }^{2-}$ is 5×10^{-3} moles/L?
12. Consider the following balanced chemical reaction:
$\mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{Ca}(\mathrm{s}) \rightarrow 2 \mathrm{~V}(\mathrm{~s})+5 \mathrm{CaO}(\mathrm{s})$
How many grams of vanadium can be produced from 455 g of vanadium(V) oxide and an excess of calcium?
13. Write the equilibrium constant expression, K_{eq}, for the following gas phase reaction:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

14. In the reaction of 7.21 g of chlorine with 14.42 g potassium bromide, which is the limiting reagent and how much bromine can be produced theoretically?
$\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
15. Consider the following balanced redox reaction:
$2 \mathrm{PbS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$
Which element gets oxidized?
16. Does the entropy, S, increase or decrease when:
a. Gasoline burns: \qquad
b. Molten candle wax freezes:
c. A flat tire is inflated with air:
\qquad
d. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}):$ \qquad
e. Alcohol and water are mixed: \qquad
17. Which one of the following statements is consistent with the diagram that follows?
a. \qquad . $\Delta \mathrm{G}>0 ; \mathrm{K}>1$.
b. \qquad . $\Delta \mathrm{G}>0 ; \mathrm{K}<1$.
c. \qquad . $\Delta \mathrm{G}<0 ; \mathrm{K}>1$.
d. \qquad . $\Delta \mathrm{G}<0 ; \mathrm{K}<1$.
G

18. Matching: Match the geometry with the molecule:
\qquad . Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
A. Pyramidal
\qquad Methane $\left(\mathrm{CH}_{4}\right)$
B. Tetrahedral
\qquad Ammonia $\left(\mathrm{NH}_{3}\right)$
C. Planar trigonal
\qquad Carbon dioxide
D. Bent
Formaldehyde $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{O}\right)$
E. Linear
19. The rate of a chemical reaction depends on (check all that apply):
a. __Temperature
b. ___Gibbs free energy (ΔG)
c. ___ Enthalpy of the reaction $(\Delta \mathrm{H})$
d. ___Energy of activation
e. Concentration of the reactants
20. Consider a solution of carbon dioxide in water (as in soda pop). The equilibrium can be expressed by means of the equation, $\mathrm{CO}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{aq})$. According to LeChatelier's principle, opening a bottle of soda pop under pressure should \qquad increase/___decrease the solubility of the gas in the aqueous phase.
