Secret word

Name \qquad

1. What is the pH of 0.010 M KOH ?
2. Carbon dioxide is a weak Lewis acid. Write the chemical equations that explain how CO_{2} manages to generate H^{+}ions when dissolved in water.
3. Sodium amide, NaNH_{2}, reacts with methanol, $\mathrm{CH}_{3} \mathrm{OH}$, in a $\mathrm{Br} \varnothing$ nsted acid-base reaction as follows:
$\mathrm{NaNH}_{2}(\mathrm{~s})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{NH}_{3}$ (methanol) $+\mathrm{NaOCH}_{3}$ (methanol)
Circle the stronger base.
4. Which solution will generate more osmotic pressure versus water: \qquad 0.10 M sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ or \qquad 0.10 M sodium phosphate $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$? Check one.
5. What is the conjugate base of hydrogen phosphate ion, $\mathrm{HPO}_{4}{ }^{2-}$?
6. A sealed vessel of steam, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 120 deg C and 1.00 atm pressure is heated to 240 deg C at constant volume. What is the final pressure of the steam?
7. What is the pH of an acetate buffer which is 0.100 M in sodium acetate and 0.250 M in acetic $\operatorname{acid} ?\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)$.

Secret word

Name
8. What is the molar concentration of hydroxide ion in a 0.100 M solution of barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$?
9. The total pressure of a gas mixture of 35% helium (He) and 65% nitrogen $\left(\mathrm{N}_{2}\right)$ is 900 mm Hg . What is the partial pressure of helium?
10. Consider the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If 6.2 L of nitrogen are reacted to form ammonia at STP, how many liters of hydrogen will be required to consume all of the nitrogen?
11. How many grams of oxygen $\left(\mathrm{O}_{2}\right)$ are contained in a 25.0 L sample at 5.20 atm and 27 deg C ?
12. Consider the melting (fusion) of sulfur: $\mathrm{S}(\mathrm{s})=\mathrm{S}(\mathrm{l})$. Provide the signs (plus (+), minus (-) or zero (0)) for the free energy \qquad ; heat of fusion \qquad ; and entropy of fusion \qquad .

Secret word

Name \qquad
13. Nitrous acid, HNO_{2}, is a weak acid. Write the expression for the acid dissociation constant, K_{a}, for its dissociation in water.
14. (10 pts). Calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ is slightly soluble in water. Its solubility is 0.0153 grams per liter at $25 \operatorname{deg} \mathrm{C}$. What is the molar concentration of CaCO_{3} in water at 25 deg C ?
15. Fill in the blank.The boiling point of any liquid is the temperature at which the
\qquad of the liquid is equal to the external pressure.
16. Match the type of inter-particle attractive force with the appropriate solvent mixture or solutesolvent pair by placing its number in the space provided.
a. __ London dispersion

1. $50-50$ water and ethyl alcohol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$.
b. __ Ion-dipole attraction
2. $\mathrm{NaCl}(\mathrm{aq})$
c. ___Dipole-dipole attraction
3. Olive oil dissolved in hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$
d.___Hydrogen bonding
4. HCN dissolved in chloroform $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$

Secret word

Name

\qquad

Useful information:

Henderson-Hasselbalch equation:

$$
\mathrm{pH}=\mathrm{pKa}+\log \frac{[A-]}{[H A]} \text { or } \mathrm{pH}=\mathrm{pKa}-\log \frac{[H A]}{[A-]}
$$

Abbreviated table of acids in order of decreasing acid strength:

ACID	CONJUGATE BASE
HCl	Cl^{-}
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
HNO_{2}	NO_{2}^{-}
HF	F^{-}
$\mathrm{CH}_{3} \mathrm{COOH}^{-}(\mathrm{HOAc})$	OAc^{-}
$\mathrm{H}_{2} \mathrm{CO}_{3}$	
NH_{4}^{+}	
$\mathrm{HCN}^{\mathrm{H}_{2} \mathrm{O}}$	OH^{-}
NH_{3}	NH_{2}^{-}

$\mathrm{K}_{\mathrm{w}}=10^{-14} ; \quad \mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} ; \quad \mathrm{pK} \mathrm{K}_{\mathrm{a}}+\mathrm{pK} \mathrm{b}_{\mathrm{b}}=14$
Ideal gas law, $\mathrm{PV}=\mathrm{nRT}$

$$
\begin{aligned}
& \mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} \text { per mol }-\mathrm{K} \text { or } 62.4 \mathrm{~L}-\mathrm{mmHg} \text { per mol- } \mathrm{K} \\
& \mathrm{~K}=\operatorname{deg~C}+273 \\
& 760 \mathrm{mmHg}=760 \text { torr }=1.000 \mathrm{~atm}=14.7 \mathrm{psi}
\end{aligned}
$$

