Chemistry 30A	
Dr Schaleger	

Secret word___

Name

- 1. What is the pH of 0.010 M KOH?
- 2. Carbon dioxide is a weak Lewis acid. Write the chemical equations that explain how CO_2 manages to generate H^+ ions when dissolved in water.

3. Sodium amide, NaNH₂, reacts with methanol, CH₃OH, in a Brønsted acid-base reaction as follows:

 $NaNH_2(s) + CH_3OH(l) \rightarrow NH_3(methanol) + NaOCH_3(methanol)$ Circle the stronger base.

- 4. Which solution will generate more osmotic pressure versus water: ____0.10 M sodium sulfate (Na₂SO₄) or ____0.10 M sodium phosphate (Na₃PO₄)? Check one.
- 5. What is the conjugate base of hydrogen phosphate ion, HPO_4^{2-} ?
- 6. A sealed vessel of steam, $H_2O(g)$, at 120 deg C and 1.00 atm pressure is heated to 240 deg C at constant volume. What is the final pressure of the steam?

7. What is the pH of an acetate buffer which is 0.100 M in sodium acetate and 0.250 M in acetic acid? (Ka = 1.8×10^{-5}).

Chemistry 30A	Midterm #3A	Laney College
Dr Schaleger		Spring 2015
Secret word	Name	

- 8. What is the molar concentration of hydroxide ion in a 0.100 M solution of barium hydroxide,
- 9. The total pressure of a gas mixture of 35% helium (He) and 65% nitrogen (N_2) is 900 mm Hg. What is the partial pressure of helium?

10. Consider the following reaction:

 $Ba(OH)_2?$

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

If 6.2 L of nitrogen are reacted to form ammonia at STP, how many liters of hydrogen will be required to consume all of the nitrogen?

11. How many grams of oxygen (O₂) are contained in a 25.0 L sample at 5.20 atm and 27 deg C?

12. Consider the melting (fusion) of sulfur: S(s) = S(l). Provide the signs (plus (+), minus (-) or zero (0)) for the free energy _____; heat of fusion _____; and entropy of fusion _____.

Midterm #3A	Laney College
	Spring 2015
Name	
	Midterm #3A Name

14. (10 pts). Calcium carbonate (CaCO₃) is slightly soluble in water. Its solubility is 0.0153 grams per liter at 25 deg C. What is the molar concentration of CaCO₃ in water at 25 deg C?

15. Fill in the blank. The boiling point of any liquid is the temperature at which the ______ of the liquid is equal to the external pressure.

16. Match the type of inter-particle attractive force with the appropriate solvent mixture or solutesolvent pair by placing its number in the space provided.

a London dispersion	1. 50-50 water and ethyl alcohol, CH_3CH_2OH .
b Ion-dipole attraction	2. NaCl(aq)
cDipole-dipole attraction	3. Olive oil dissolved in hexane (C_6H_{14})
dHydrogen bonding	4. HCN dissolved in chloroform (CH ₃ Cl)

^{13.} Nitrous acid, HNO_2 , is a weak acid. Write the expression for the acid dissociation constant, K_a , for its dissociation in water.

Chemistry 30A Dr Schaleger

Secret word_____

Name_

Useful information:

Henderson-Hasselbalch equation:

 $pH = pKa + log \frac{[\mathit{A}-]}{[\mathit{H}A]} \ or \ pH = pKa \ - \ log \frac{[\mathit{H}A]}{[\mathit{A}-]}$

Abbreviated table of acids in order of decreasing acid strength:

ACID	CONJUGATE BASE
HCl	Cl
H_3O^+	H ₂ O
H_3PO_4	H_2PO_4
HNO ₂	NO ₂
HF	F
CH ₃ COOH (HOAc)	OAc ⁻
H_2CO_3	
$\mathrm{NH_4}^+$	
HCN	
H ₂ O	OH.
NH ₃	NH ₂

 $K_{\rm w} = 10^{-14}; \qquad pH + pOH \ = 14$

 $K_{a} \ K_{b} \ = \ K_{w}; \quad \ p K_{a} + p K_{b} \ = \ 14$

Ideal gas law, PV = nRT

R = 0.0821 L-atm per mol-K or 62.4 L-mmHg per mol-K

 $K = \deg C + 273$

760 mmHg = 760 torr = 1.000 atm = 14.7 psi