1. Calculate the molarity: $22.615 \mathrm{~g} \mathrm{AgClO}_{4}$ in 250 mL solution. [mass to moles to M].

0.436 M

2. Calculate osmolality: 16.49 g NaCl in 500 mL water. [mass to moles $\mathrm{x} \#$ particles to M].

1.128.osm

3. Calculate \#moles: 50.0 mL of 0.40 M KBr . [volume to \#moles].
$0.0500 \times 0.40=\mathbf{0 . 0 2 9}$ moles
4. Calculate molarity: 10.0 mL 2.50 M NaOH is diluted to a final volume of $500 \mathrm{~mL} .[\mathrm{MV}=\mathrm{MV}]$.
$2.50 \times 10 / 500=\mathbf{0 . 0 5 0 0} \mathbf{M}$
5. Calculate mass (g): 20.0 mL of $0.427 \mathrm{M} \mathrm{HNO}_{3}$ solution. [\#moles (MV) to mass].

0.538 g

6. Calculate molarity: 36.09 g NaCl in 500 mL solution. [mass to moles to M].
$36.09 /(58.45 \times 0.500)=\mathbf{1 . 2 3 5} \mathbf{M}$
7. Calculate molarity: The solution in \#6 is diluted, 10 mL to 250 mL . [dilution factor].

25x dilution. 0.494 M
8. What volume of 0.100 M acetic acid is required to give 0.024 moles?
$\mathrm{V}=0.024 / 0.100=\mathbf{0 . 2 4} \mathbf{L}$
9. Balanced equation: $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{HOH}$. What volume of 02.00 M HCl is needed to completely react with $16.47 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$? [mass to moles to moles to volume].
$(16.47 / 78)(3 / 1)(1 / 2.00)=\mathbf{0 . 3 1 6} \mathbf{L}$
10. $3 \mathrm{CuCl}_{2}+2 \mathrm{Al} \rightarrow 3 \mathrm{Cu}+2 \mathrm{AlCl}_{3}$; How many grams of Al are needed to completely react with 100 mL of $0.200 \mathrm{M} \mathrm{CuCl}_{2}$? $[\mathrm{M}(\mathrm{CuCl} 2)$ to moles $(\mathrm{CuCl} 2)$ to moles Al to mass Al$]$.
$0.100 \times 0.200 \times(2 / 3) \times 27=\mathbf{0 . 3 6 0} \mathbf{g}$
11. How would you prepare 500 mL of a 0.20 M solution of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right.$, mol wt 342.3$)$ using a balance $(0.01 \mathrm{~g})$ and a 500.0 mL volumetric flask?
$0.500 \times 0.20=0.10$ moles sucrose; $0.10 \times 342 \mathrm{~g} / \mathrm{mol}=\mathbf{3 4 . 2 0} \mathrm{g}$ sucrose; dissolve in water to the mark of the 500 mL volumetric flask.
12. What is the molar concentration of a solution made up by dissolving $20.05 \mathrm{~g} \mathrm{MgSO}_{4}$ in enough water to give a final volume of 250 mL ?
$\mathrm{MgSO}_{4}(120.3 \mathrm{~g} / \mathrm{mol}) .(20.05 / 120.3) / 0.250=\mathbf{0 . 6 6 7} \mathbf{~ M}$
13. What is the osmolality of a solution made up by dissolving 40.27 g of MgSO_{4} in 500 g water? [mass to moles times \#particles to osmolality].

2 particles per mole. $\{(40.27 / 120.3) / 0.500\} \times 2=\mathbf{1 . 3 4} \mathbf{~ o s m}$
14. How many moles of HCl are contained in 50 mL of a 0.127 M solution? [$\mathrm{MV}=$ moles].
$0.050 \times 0.127=\mathbf{0 . 0 0 6 4}$ moles
15. 10.00 mL of an aqueous solution of HNO_{3} is exactly neutralized by 23.21 mL of 0.25 M NaOH . What is the molar concentration of HNO_{3} ? [Balanced equation?].

1:1 mole ratio. $\mathrm{M}=(23.21 \times 0.25) / 10.0=\mathbf{0 . 5 8} \mathbf{M}$
16. Which solution would be subjected to the greater osmotic pressure vs. water: 0.40 M NaCl or $0.30 \mathrm{M} \mathrm{BaCl}_{2}$? Compare osmolarities: $\mathrm{NaCl}=0.80$ osm; $\mathbf{B a C l}_{\mathbf{2}}=\mathbf{. 0 9 0} \mathbf{~ o s m}$.
17. 100 ML of 2.00 M HCl is diluted to 250 mL . What is the concentration of the new solution?

Molarity $=2.00 \times 100 / 250=\mathbf{0 . 8 0} \mathbf{M}$
18. $5.28 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}$ is dissolved in enough water to give 500 mL solution. What is the molar concentration of hydroxide ion in the solution?

2 moles hydroxide ion per mole of $\mathrm{Ba}(\mathrm{OH})_{2} .\{(5.28 / 171) / 0.500\} \times 2=\mathbf{0 . 1 2 4} \mathbf{~ M}$
19. 50 mL of 0.100 M NaCl is mixed with 250 mL of 0.25 M NaCl . How many grams of NaCl are contained in the new solution?

No moles $=0.050 \times 0.100+0.250 \times 0.25=0.0675$ moles. Then $0.0675 \times 58.45=\mathbf{3 . 9 5} \mathbf{g}$.
20. $2 \mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{HOH} ; 10.0 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}$ reacts exactly with how many mL of $0.5 \mathrm{M} \mathrm{HNO}_{3}$? [moles $\mathrm{Ba}(\mathrm{OH})_{2}$ to moles HNO_{3} to volume HNO_{3}].
$10.0 / 171=0.0585$ moles. Multiply by 2 (moles HNO3 per mole of $\mathrm{Ba}(\mathrm{OH}) 2)$ to get 0.1170 moles of HNO3. Then $0.1170 / 0.5=\mathbf{0 . 2 3 4} \mathbf{L}$

