1. Calculate the molarity: $22.615 \mathrm{~g} \mathrm{AgClO}_{4}$ in 250 mL solution. [mass to moles to M].
2. Calculate osmolality: 16.49 g NaCl in 500 mL water. [mass to moles $\mathrm{x} \#$ particles to M].
3. Calculate \#moles: 50.0 mL of 0.40 M KBr . [volume to \#moles].
4. Calculate molarity: 10.0 mL 2.50 M NaOH is diluted to a final volume of $500 \mathrm{~mL} .[\mathrm{MV}=\mathrm{MV}]$.
5. Calculate mass (g): 20.0 mL of $0.427 \mathrm{M} \mathrm{HNO}_{3}$ solution. [\#moles (MV) to mass].
6. Calculate molarity: 36.09 g NaCl in 500 mL solution. [mass to moles to M].
7. Calculate molarity: The solution in \#6 is diluted, 10 mL to 250 mL . [dilution factor].
8. What volume of 0.100 M acetic acid is required to give 0.024 moles?
9. Balanced equation: $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{HOH}$. What volume of 02.00 M HCl is needed to completely react with $16.47 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$? [mass to moles to moles to volume].
10. $3 \mathrm{CuCl}_{2}+2 \mathrm{Al} \rightarrow 3 \mathrm{Cu}+2 \mathrm{AlCl}_{3}$; How many grams of Al are needed to completely react with 100 mL of $0.200 \mathrm{M} \mathrm{CuCl}_{2}$? $[\mathrm{M}(\mathrm{CuCl} 2)$ to moles $(\mathrm{CuCl} 2)$ to moles Al to mass Al$]$.
11. How would you prepare 500 mL of a 0.20 M solution of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right.$, mol wt 342.3$)$ using a balance $(0.01 \mathrm{~g})$ and a 500.0 mL volumetric flask?
12. What is the molar concentration of a solution made up by dissolving $20.05 \mathrm{~g} \mathrm{MgSO}_{4}$ in enough water to give a final volume of 250 mL ?
13. What is the osmolality of a solution made up by dissolving 40.27 g of MgSO_{4} in 500 g water? [mass to moles times \#particles to osmolality].
14. How many moles of HCl are contained in 50 mL of a 0.127 M solution? [$\mathrm{MV}=$ moles].
15. 10.00 mL of an aqueous solution of HNO_{3} is exactly neutralized by 23.21 mL of 0.25 M NaOH . What is the molar concentration of HNO_{3} ? [Balanced equation?].
16. Which solution would be subjected to the greater osmotic pressure vs. water: 0.40 M NaCl or $0.30 \mathrm{M} \mathrm{BaCl}_{2}$?
17. 100 ML of 2.00 M HCl is diluted to 250 mL . What is the concentration of the new solution?
18. $5.28 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}$ is dissolved in enough water to give 500 mL solution. What is the molar concentration of hydroxide ion in the solution?
19. 50 mL of 0.100 M NaCl is mixed with 250 mL of 0.25 M NaCl . How many grams of NaCl are contained in the new solution?
20. $2 \mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{HOH} ; 10.0 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}$ reacts exactly with how many mL of $0.5 \mathrm{M} \mathrm{HNO}_{3}$? [moles $\mathrm{Ba}(\mathrm{OH})_{2}$ to moles HNO_{3} to volume HNO_{3}].
