Group Names:

1. A sample of gas has a volume of 135 mL at 0.600 atm . What would the volume be if the pressure is decreased to 0.200 atm while temperature is held constant?

$$
\begin{aligned}
P_{1} V_{1} & =P_{2} V_{2} \\
V_{2} P_{2} & =\frac{P_{1} V_{1}}{P_{2}}=\frac{(135)(0,600)}{0,200}=405 \mathrm{~mL}
\end{aligned}
$$

2. A sealed stainless steel bomb containing 250 mL of gas at a pressure of 1.00 atm and a temperature of 50 deg C is heated to 100 deg C . What is the new pressure inside the bomb?

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; \quad P_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}}=\frac{(1.00)(250)(273+100)}{(273+50)(250)} \\
=1.15 \mathrm{~atm}
\end{gathered}
$$

3. A sample of helium has a volume of 480 mL at 47.0 deg C and 740 mm Hg . The temperature is lowered to 22.0 deg C and the pressure to 625 mm Hg . What is the new volume?

$$
V_{2}=\frac{P_{1} V_{1} T_{2}}{P_{2} T_{1}}=\frac{(740)(480)(273+22)}{(625)(273+47)}=524 \mathrm{~mL}
$$

4. How many moles of gas are present in a 10.0 L sample at STP?

$$
\begin{aligned}
& P V=n R T ; \quad S T P: 0^{\circ} \mathrm{C},(273 \mathrm{~K}) \text { and } 1,00 \mathrm{~atm} \\
& n=\frac{\text { aV }}{R T}=\frac{(1,00)(10,0 \mathrm{~L})}{\left(0,082 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol} \mathrm{~K}}\right)(273 \mathrm{~K})}=0,446 \text { moles }
\end{aligned}
$$

5. Consider the following balanced reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

If 10.3 L of nitrogen are reacted to form ammonia at STP, how many liters of hydrogen will be required to completely consume all of the nitrogen?

Equal volumes of gas at the same $T+P$ contain equal numbers of moles.

$$
10.3 \mathrm{LN} \mathrm{~N}_{2} \times \frac{3 \mathrm{~L}-\mathrm{H}_{2}}{L-N_{2}}=30.9 \mathrm{~L}
$$

6. How many grams of nitrogen are contained in a 5.0 L sample at STP ? $\mathrm{N}_{2}=28 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
& n=\frac{P V}{R T}=\frac{(1.00)(5.0)}{(0.082)(273)}=0.223 \text { moles } \\
& n=\frac{m}{m} \text { so } m=n M=(0.223)(28)=6.2 \mathrm{~g}
\end{aligned}
$$

7. A 3.0 mL sample of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is completely vaporized at 95 deg C . What is the volume of the vapor if the barometric pressure is 29.61 inches of mercury?

$$
\begin{aligned}
& d\left(\mathrm{CH}_{3} \mathrm{OH}\right) @ 20^{\circ} \mathrm{C}=0.79 \mathrm{~g} / \mathrm{mL} \\
& (3.0)(0.79)=2.37 \mathrm{~g} \mathrm{meOH}^{0} \quad \frac{29.6 \mathrm{~m}}{25.4 \mathrm{~mm} / \mathrm{in} \quad 29.61 \mathrm{in} \times 254 \mathrm{~mm} / \mathrm{in}=} \\
& V=\frac{n R T}{P}=\frac{\left(\frac{2.37}{32}\right)(.082)(273+95)}{0.989}=2.26 \mathrm{~mm} \mathrm{Hg} \text { or } \frac{752}{760}=0.989 \mathrm{~atm}
\end{aligned}
$$

8. Write a balanced equation for the combustion of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. Then calculate the mass of carbon dioxide produced when 50.0 mL of benzene is burned. (The density of benzene is 0.87

$$
\begin{aligned}
& \mathrm{g} / \mathrm{mL} \text {). } \\
& \mathrm{C}_{6} \mathrm{H}_{6}+7.5 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
& 50 \times .87=43.5 \mathrm{~g} \\
& \frac{43.5}{78}=0.557 \text { moles } \mathrm{C}_{6} \mathrm{H}_{6} \\
& 0.557 \text { moles } \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{6 \text { moles } \mathrm{CO}_{2}}{\text { mole } \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{449 \mathrm{CO}_{2}}{\operatorname{mol~CO}}=147 \mathrm{gCO}
\end{aligned}
$$

9. What is the pressure in a 1.00 L container of methane, CH_{4}, that contains 40.0 g of the gas at 25.0 deg C?

$$
P=\frac{n R T}{V}=\frac{(2.5)(.082)(298)}{1.0}=61.1 \mathrm{~atm}
$$

$\mathrm{CH}_{4}: \frac{40}{16}=2.5$ moles
10. If a 0.614 g sample of a gas maintains a pressure of 238 mm Hg when contained in a 1.0 L flask at 0.0 deg C , what is the molecular weight of the gas?

$$
\begin{aligned}
& P V=n R T \quad P=\frac{238}{760} \mathrm{~atm}=0.313 \mathrm{~atm} \\
& V=1.0 \mathrm{~L} \\
& R=0,082 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K} \\
& T=273 \mathrm{~K} \\
& n=\frac{P V}{R T}=\frac{(0.313)(1.0)}{(0.082)(273)}=0,0140 \mathrm{moles} \\
& n=\frac{m}{M} ; \quad M=\frac{m}{n}=\frac{0.614}{0.0140}=43.9 \mathrm{~g} / \mathrm{mol} 244
\end{aligned}
$$

