1. (4). What is the formula of the sulfide of lithium?

$\mathrm{Li}_{2} \mathrm{~S}$

2. (4). How many neutrons are present in the nucleus of chlorine-35?

18
3. (5). What is the pH of 0.0010 M NaOH ?
11.0.
4. (5). Hydrogen chloride, a gas, dissolves in water with the evolution of a considerable amount of heat. Write a chemical equation that explains this observation.
$\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
5. (5). Provide the missing product in the following nuclear reaction:
${ }_{94} \mathrm{Pu}^{238} \rightarrow{ }_{2} \mathrm{He}^{4}+$? Answer: ${ }_{92} \mathrm{U}^{234}$
6. (10). Sodium amide, NaNH_{2}, reacts with water in a Brønsted acid-base reaction as follows:

$$
\mathrm{NaNH}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq})
$$

a. Write the net ionic equation for this reaction.
$\mathrm{NaNH}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
b. Which is the stronger base, __X__sodium amide or ____sodium hydroxide?
7. (4). What is the oxidation number of chlorine in NaOCl ? Answer: +1 .
8. (5). The half-life of C-14 is about 6000 years. After 18,000 years, what percentage of the original amount of the isotope would remain? Answer: Three half-lives or 12.5%.
9. (4). Although helium is a gas under normal conditions, it becomes a liquid at about 4 K . The principal force of attraction holding atoms together in its liquid phase is:
a. ___Ion-ion
b. ___Dipole-dipole
c. __X__London dispersion (induced dipole-induced dipole)
d. ___Hydrogen bonding
10. (4). One of the following combinations would likely form a homogeneous mixture. Check it.
a. ___gasoline and water
b. __X__glucose and water
c. ___olive oil and vinegar
d. ___sodium chloride and hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$
11. (5). Balance the following equation:
$\mathrm{C}_{4} \mathrm{H}_{6}+11 / 2 \mathrm{O}_{2} \rightarrow \quad 4 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
12. (5). Identify the element that has the same electronic configuration as Se^{2-}. Answer: Kr .
13. (5). Check the one reaction below that does not go to completion (99\%). (Note: equations are not necessarily balanced):
a. $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $\quad \mathrm{X} ___{-} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{KNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
c. $\quad \mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
d. $\quad \mathrm{NaOAc}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{HOAc}(\mathrm{aq})$
14. (5). Consider the following balanced equation:
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
If 54.0 g of aluminum reacts with an excess of HCl , what volume of hydrogen will be produced at STP? Answer: $3 \times 22.4=67.2$ L.

$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
1:1 mole ratio. $\mathrm{Ca}(\mathrm{OH})_{2}, 50 / 74=0.68$ moles. $\mathrm{CO}_{2}, 50 / 44=1.14$ moles. Therefore L. $\mathrm{Rgt}=$ $\mathrm{Ca}(\mathrm{OH})_{2}$.
16. (12). Give a specific example of each of the following:
a. The proper name of manganese dioxide, MnO_{2}. Answer: Manganese(IV) oxide.
b. An isotope of carbon-14. Answer: C-12 or C-13.
c. The metal whose electronic configuration is Ar$) 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$: Answer: Mn .
d. The conjugate acid of $\mathrm{HPO}_{4}{ }^{2-}$. Answer: $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
17. (6). Boron trifluoride $\left(\mathrm{BF}_{3}\right)$ does not obey the octet rule and has dipole moment of zero. Draw the Lewis structure showing all valence electrons, predict its geometric shape and specify the F-B-F bond angle. (B is the central atom). Answer: BF_{3} is planar because it lacks the lone pair of electrons that would force it into a tetrahedral geometry per VSEPR theory.
18. (5). One liter of steam $\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)$ at 120 deg C and 1.00 atm pressure is heated to 240 deg C at constant volume. What is the final pressure of the steam?
$\mathrm{P} 1 / \mathrm{T} 1=\mathrm{P} 2 / \mathrm{T} 2 . \mathrm{T} 1=393 \mathrm{~K} ; \mathrm{T} 2=513 \mathrm{~K}$. Solve for P 2.
19. (4). In osmosis, the flow of water molecules across a semipermeable membrane is from
\qquad more concentrated solution to less concentrated;
\qquad less concentrated solution to more concentrated.
20. (5). Write the equilibrium constant expression, K , for the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Answer: $\mathrm{K}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}$ or $\left(\mathrm{p}\left(\mathrm{NH}_{3}\right)\right)^{2} /\left(\mathrm{p}\left(\mathrm{N}_{2}\right)\right)\left(\mathrm{p}\left(\mathrm{H}_{2}\right)^{3}\right)$
21. (5). What is the pH of an acetic acid $(0.100 \mathrm{M})$ - sodium acetate $(0.200 \mathrm{M})$ buffer solution? The pKa of acetic acid is 4.75 .

Use Henderson-Hasselbalch equation.
22. (5). Amanda von Weisenheimer obtained the following data using the ideal gas law: weight of unknown gas $=0.121 \mathrm{~g}$; number of moles of unknown gas $=0.00168$ moles. What is the molecular weight of Amanda's unknown gas?

Answer: $72 \mathrm{~g} / \mathrm{mole}$.
23. (6). Consider the bond dissociation reaction, $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$.
a. Is the reaction \qquad exothermic or _X \qquad endothermic?
b. Is $\Delta \mathrm{S}$ __X__positive or ___ negative?
24. (5). What is the molarity of a solution made up by dissolving $24.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$ in water and diluting to a final volume of 500 mL ?

Answer: $24.0 /(142 \mathrm{x} 0.5)=0.338 \mathrm{M}$.

