1. (4). What is the formula of the sulfide of lithium?

 Li_2S

2. (4). How many neutrons are present in the nucleus of chlorine-35?

18

3. (5). What is the pH of 0.0010 M NaOH?

11.0.

4. (5). Hydrogen chloride, a gas, dissolves in water with the evolution of a considerable amount of heat. Write a chemical equation that explains this observation.

 $HCl(g) + H_2O(l) \rightarrow H_3O^+ + Cl^-$

5. (5). Provide the missing product in the following nuclear reaction:

 $_{94}$ Pu²³⁸ \rightarrow $_{2}$ He⁴ + ? Answer: $_{92}$ U²³⁴

6. (10). Sodium amide, NaNH₂, reacts with water in a Brønsted acid-base reaction as follows:

 $NaNH_2(s) + H_2O(1) \rightarrow NH_3(aq) + NaOH(aq)$

a. Write the net ionic equation for this reaction.

 $NaNH_2(s) + H_2O(l) \rightarrow NH_3(aq) + Na^+(aq) + OH^-(aq)$

- b. Which is the stronger base, __X__sodium amide or ____sodium hydroxide?
- 7. (4). What is the oxidation number of chlorine in NaOCl? Answer: +1.
- 8. (5). The half-life of C-14 is about 6000 years. After 18,000 years, what percentage of the original amount of the isotope would remain? Answer: Three half-lives or 12.5%.
- 9. (4). Although helium is a gas under normal conditions, it becomes a liquid at about 4 K. The principal force of attraction holding atoms together in its liquid phase is:
 - a. ____Ion-ion
 - b. ____Dipole-dipole
 - c. __X_London dispersion (induced dipole-induced dipole)
 - d. ____Hydrogen bonding

- 10. (4). One of the following combinations would likely form a homogeneous mixture. Check it.
 - a. ____gasoline and water
 - b. __X__glucose and water
 - c. ____olive oil and vinegar
 - d. _____sodium chloride and hexane (C_6H_{14})
- 11. (5). Balance the following equation:
 - $C_4H_6 + 11/2 \quad O_2 \rightarrow 4 CO_2 + 3 H_2O$
- 12. (5). Identify the element that has the same electronic configuration as Se^{2-} . Answer: Kr.
- 13. (5). Check the one reaction below that does not go to completion (99%). (Note: equations are not necessarily balanced):

a.
$$Na_2CO_3(aq) + HCl(aq) \rightarrow NaCl(aq) + CO_2(g) + H_2O(l)$$

- b. _X__Na₂SO₄(aq) + KNO₃(aq) \rightarrow NaNO₃(aq) + K₂SO₄(aq)
- c. <u>NaCl(aq)</u> + AgNO₃(aq) \rightarrow AgCl(s) + NaNO₃(aq)
- d. ___NaOAc(aq) + HCl(aq) \rightarrow NaCl(aq) + HOAc(aq)

14. (5). Consider the following balanced equation:

 $2 \operatorname{Al}(s) + 6\operatorname{HCl}(aq) \rightarrow 2 \operatorname{AlCl}_3(aq) + 3 \operatorname{H}_2(g)$

If 54.0 g of aluminum reacts with an excess of HCl, what volume of hydrogen will be produced at STP? Answer: $3 \times 22.4 = 67.2 \text{ L}$.

15. (5). Which is the limiting reagent in the reaction of 50.0 g Ca(OH)₂ with 50.0 g CO₂: Ca(OH)₂ + CO₂ \rightarrow CaCO₃ + H₂O

1:1 mole ratio. $Ca(OH)_2$, 50/74 = 0.68 moles. CO_2 , 50/44 = 1.14 moles. Therefore L.Rgt = $Ca(OH)_2$.

- 16. (12). Give a specific example of each of the following:
- a. The proper name of manganese dioxide, MnO₂. Answer: Manganese(IV) oxide.
- b. An isotope of carbon-14. Answer: C-12 or C-13.
- c. The metal whose electronic configuration is $Ar)4s^2 3d^5$: Answer: Mn.
- d. The conjugate acid of $HPO_4^{2^-}$. Answer: $H_2PO_4^{-}$
- 17. (6). Boron trifluoride (BF₃) does not obey the octet rule and has dipole moment of zero. Draw the Lewis structure showing all valence electrons, predict its geometric shape and specify the F-B-F bond angle. (B is the central atom). Answer: BF₃ is planar because it lacks the lone pair of electrons that would force it into a tetrahedral geometry per VSEPR theory.

18. (5). One liter of steam ($H_2O(g)$) at 120 deg C and 1.00 atm pressure is heated to 240 deg C at constant volume. What is the final pressure of the steam?

P1/T1 = P2/T2. T1 = 393 K; T2 = 513 K. Solve for P2.

19. (4). In osmosis, the flow of water molecules across a semipermeable membrane is from

_____ more concentrated solution to less concentrated;

__X_less concentrated solution to more concentrated.

20. (5). Write the equilibrium constant expression, K, for the following reaction:

 $N_2(g) + 3H_2(g) = 2NH_3(g)$

Answer: $K = [NH_3]^2 / [N_2][H_2]^3$ or $(p(NH_3))^2 / (p(N_2))(p(H_2)^3)$

21. (5). What is the pH of an acetic acid (0.100 M) – sodium acetate (0.200 M) buffer solution? The pKa of acetic acid is 4.75.

Use Henderson-Hasselbalch equation.

22. (5). Amanda von Weisenheimer obtained the following data using the ideal gas law: weight of unknown gas = 0.121 g; number of moles of unknown gas = 0.00168 moles. What is the molecular weight of Amanda's unknown gas?

Answer: 72 g/mole.

- 23. (6). Consider the bond dissociation reaction, $H_2(g) \rightarrow 2 H(g)$.
 - a. Is the reaction _____exothermic or _X___endothermic?
 - b. Is $\Delta S _ X _$ positive or _____negative?
- 24. (5). What is the molarity of a solution made up by dissolving $24.0 \text{ g Na}_2\text{SO}_4$ in water and diluting to a final volume of 500 mL?

Answer: 24.0/(142x0.5) = 0.338 M.