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[E]  Let 
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 be the center of the circle.  Let 
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7. [E] Among the 
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8. [C]  
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9. [B]  The complete sequence AMATYC occurs 16 times, taking up 
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10. [D]  Let there be 
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13. [C]  The number of horizontal tiles can be 4, as illustrated.  It can be reasoned in a straightforward manner that neither 0 nor 2 horizontal blocks are possible.
14. [B]  Observe that a biprime cannot be a multiple of 4.  Hence 
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 has to be congruent to 1 modulo 4 (i.e. of the form 
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15. [D]  Let there be 
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 counters whose right-hand neighbor is the same color.  So there are also 
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16. [A] 
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17. [D]  Take the difference of the two equations in the system to get 
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18. [D]  Let 
[image: image152.wmf]D

 be the midpoint of 
[image: image153.wmf]BC

.  Apply the Pythagorean Theorem to 
[image: image154.wmf]ABD

D

 to get 
[image: image155.wmf]24

=

AD

, and so the areas of 
[image: image156.wmf]ABC

D

 is 
[image: image157.wmf]168

)

24

)(

14

(

2

1

=

.  On the other hand, the area of 
[image: image158.wmf]ABC

D

 is the sum of the areas of 
[image: image159.wmf]PAB

D

, 
[image: image160.wmf]PBC

D

, 
[image: image161.wmf]PCA

D

, and so is 
[image: image162.wmf]r

r

CA

BC

AB

32

)

(

2

1

=

+

+

, where 
[image: image163.wmf]r

is the distance we are seeking.  So 
[image: image164.wmf]r

32

168

=

, 
[image: image165.wmf]4

/

21

=

r

.
19. [E] Approach the problem by brute force.  First, list all perfect squares formed by three distinct non-zero digits by squaring 10, 11, 12, etc and ruling out those with repeated digits.  The resulting list is 169, 196, 256, 289, 324, 361, 529, 576, 625, 729, 784, 841, 961.  Among them only 324 and 361 contain the digit 3, thus one of them has to be included.  If it’s 324, then the other two perfect squares must be from among 169, 196, 576, 961, in order to avoid reusing 3, 2, or 4.  For the digit 5 to appear, we are forced to include 576, with the remaining digits 1, 8, 9 unable to form a perfect square, thus 324 doesn’t work.  Try 361, with the other two perfect squares thus coming from among 289, 529, 729, 784.  To accommodate the digit 5, we include 529, with the remaining perfect square thus being 784.  We have 
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