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Revision history:  
[v.1.01, April 1, 2012]  In the paragraph following the first displayed formula, an erroneous statement on cosine, not used elsewhere, is removed from one sentence.
[v.1.02, April 1, 2012 and v.1.03, April 13, 2014] Fixed typos. [v.1.04, October 5, 2014] Fixed one typo, and made minor changes in wording.
This note describes a strategy taken by the spreadsheet “creating_scatterplot_with_desired_r.xls” (starting with version 2.0 of March 2011) to create a bivariate data set with prescribed values for 
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.  The strategy relies on a formulation of linear regression in terms of linear algebra, a formulation we first review below.
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 is the least squares line, i.e. the line that minimizes the sum of squares of residuals.
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.  Compare this with 
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with the three vectors on the right-hand side mutually orthogonal.   The first two pieces 
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This geometric picture makes it easier to see how to generate a data set with prescribed values for 
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Suppose, in addition, we would like the data set 
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The implementation of the strategy laid out here appears mainly in the sheet with tab “Norm Gen” in version 2.0 or newer of the Excel spreadsheet creating_scatterplot_with_desired_r.xls”, which is part of the collection of spreadsheets for use in an introductory course in Statistics, a collection originally created by Bill Lepowsky of the Math Department of Laney College in 2010.
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