Chapter 10 Exam Blank

1. Which of the diatomic molecules are gases?
2. What is the difference between a gas and a vapor?
3. A liquid and a gas are moved to large containers (let's keep the volume the same for both containers). How does their behavior differ once they are moved from a small container to a larger container?
4. Although liquid water and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ do not mix, their vapors form a homogeneous mixture. Give an explanation based on the behavior of liquids and gases to explain this phenomenon.
5. (4 points) An ideal gas initially at 710 torr and $30.59^{\circ} \mathrm{C}$ occupies 2600 mL . Calculate the final temperature in ${ }^{\circ} \mathrm{C}$, if the conditions are changed to a pressure (4 points) A gas cylinder with a volume of 6.00 L contains 1.00 g of Ar and 2.00 g of Ne. The temperature of the two gases is 294 K .
a. Find the partial pressure of each gas.
b. Find the mole fraction of each gas.
6. of 1.20 atm and volume of 3.25 L
7. (6 points) A $23.5-\mathrm{mL}$ volume of hydrochloric acid reacts completely with a solid sample of MgCO_{3}. The volume of CO_{2} formed is 154 mL at $25.98^{\circ} \mathrm{C}$ and 731.6 mmHg . What is the molarity of the acid solution?

$$
2 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{MgCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{MgCl}_{2(\mathrm{aq})}
$$

8. (6 points) Cyanogen, a highly toxic gas, is composed of $46.2 \mathrm{~g} \% \mathrm{C}$ and $53.8 \% \mathrm{~N}$ by mass. At $25^{\circ} \mathrm{C}$ and 750 torr, 1.05 g of cyanogen occupies 0.500 L . What is the molecular formula of cyanogen.
9. (5 points) The rate of effusion of oxygen gas at $0^{\circ} \mathrm{C}$ is $4,61 \mathrm{X} 10^{2} \mathrm{~m} / \mathrm{sec}$, What is the rate of SO_{2} gas at the same pressure and temperature?
10. (4 points) Suppose you were marooned on a tropical island and had to make a primitive barometer using sea water (density $=1.10 \mathrm{~g} / \mathrm{mL}$). What height would the water reach in your sea water barometer when a mercury barometer would reach 77.5 cm ? $\mathrm{d}(\mathrm{Hg})=$ $13.6 \mathrm{~g} / \mathrm{mL}$.
11. (4 points) A gas cylinder with a volume of 6.00 L contains 1.00 g of Ar and 2.00 g of Ne. The temperature of the two gases is 294 K .
c. Find the partial pressure of each gas.
d. Find the mole fraction of each gas.
12. (8 points) A sample of nitrogen gas is at STP. The volume of the container is decreased while keeping the temperature constant. Use kinetic-molecular theory to explain whether each of the following would increase, decrease, or remain constant and WHY.
a) the average KE
b) the average speed
c) the frequency of the collisions
d) the frequency of collisions per unit area
e) The pressure of the gas
13. (4 points) A bicycle tires filled with air to a pressure of 100 . PSI at a temperature of $19^{\circ} \mathrm{C}$. Riding the bike on a hot day increases the temperature of the tire to $58^{\circ} \mathrm{C}$. The tire volume increases by 4.00%. What is the new pressure in the tire?
14. (6 points) Automobiles are equipped with airbags. Many that inflate with N_{2} use the rapid reaction of $\mathrm{NaN}_{3}+\mathrm{Fe}_{2} \mathrm{O}_{3}$ which is initiated by a spark. How many grams of NaN_{3} sodium azide) would be required to provide 75.0 L of N_{2} at $25.0^{\circ} \mathrm{C}$ and 748 mmHg ? $6 \mathrm{NaN}_{3(\mathrm{~s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 3 \mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{Fe}_{(\mathrm{s})}+9 \mathrm{~N}_{2(\mathrm{~g})}$
15. (6 points) Two flasks of equal volume are filled with a gas. Flask A contains H_{2} at $0^{\circ} \mathrm{C}$ and 1 atm pressure. Flask B contains CO_{2} at $25^{\circ} \mathrm{C}$ and 2 atm pressure. Compare these two gases, using the postulates of KMT, with respect to each of the following: [hint: start with a definition]
a. The average kinetic energy per molecule
b. The average molecular velocity.
c. The number of molecules
d. The mass of the gas.
16. (4 points) An incandescent light bulb is filled with $6.00 \times 10^{-5} \mathrm{~mol}$ of argon. The bulb has a volume of 800.0 mL . What is the pressure of the argon in the light bulb at $75^{\circ} \mathrm{C}$?
17. (12 points) A quantity of Neon gas originally at 5.25 atm in a $2.00-\mathrm{L}$ container at $26.0^{\circ} \mathrm{C}$ is transferred to a 12.5 L container at $20^{\circ} \mathrm{C}$. A quantity of He originally at 5.25 atm and $26.0^{\circ} \mathrm{C}$ in a $5.00-\mathrm{L}$ container is transferred to the same container (12.5 L) containing the neon.
a. (3 points) What is the pressure of the neon in the new container?
b. (3 points) What new pressure of the He gas?
c. (2 points) What is the total pressure of the new container?
d. (4 points) What are the mole fractions of He and Ne in the new container?
18. (6 points) If the atmospheric pressure is 0.995 atm , what is the pressure of the enclosed gas in each of the two open ended manometers. Assume the grey material is mercury. ${ }^{1}$
$\mathrm{H}_{1} 52 \mathrm{~cm}$

$$
\mathrm{H}_{2}=67 \mathrm{~cm}
$$

$$
\mathrm{H}_{3}=10.3 \mathrm{~cm}
$$

[^0]
19. (4 points) What is the molar mass of a compound that takes 2.0 times longer to effuse through a porous plug than it did for the same amount of XeF_{2} at the same temperature and pressure?
20. (4 points) An ideal gas initially at $1,209 \mathrm{mmHg}$ and $30.00^{\circ} \mathrm{C}$ occupies $2,600 . \mathrm{mL}$. Calculate the final temperature in ${ }^{\circ} \mathbf{C}$, if the conditions are changed to a pressure of 1.50 atm and volume of 5.32 L
21. (6 points) A self-contained breathing apparatus uses canisters containing potassium superoxide, KO_{2}. The superoxide consumes the CO_{2} exhaled by a person and replaces it with oxygen. What mass of potassium superoxide is required to react with 8.00 L of carbon dioxide at $22.0^{\circ} \mathrm{C}$ and 767 mmHg ?
$$
4 \mathrm{KO}_{2(\mathrm{~s})}+2 \mathrm{CO}_{2(g)} \rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3(s)}+3 \mathrm{O}_{2(g)}
$$

[^0]: ${ }^{1}$ http://www2.chemistry.msu.edu/courses/cem152/snl_cem152_SS12/_images/manometer.gif

