Chapter 13 section 13.4 Exam Blank

1. **(6 Point)** An aqueous solution is 22.0% rubidium chloride by mass. The density of the solution is 1.127 g/mL. What are the molality, the mole fraction, and the molarity of the solution?

22.0 g RbCl	1 mol RbCl	= 0.1819 mol RbCl
	120.92 g RbCl	
78.0 g H ₂ O	1 mol H ₂ O	$_{-}$ = 4.339 mol H ₂ O
	1.008 g H	
	-	
Molality	0.1819 mol RbCl	=2.33 <u>m</u> RbCl sol'n
	0.0780 kg H ₂ O	
Mole fraction	0.1819 mol RbCl	= 0.0403
	4.510 total moles	_

Molarity

22.0 g RbCl	1.127 g sol'n	1 mL	1 mol RbCl	= 2.05MRbCl sol'n
100.0 g RbCl sol'n	1 mL sol'n	0.001 L	120.92 g RbCl	

- 2. **(6 points)** A sulfuric acid solution containing 571.6 g of H₂SO₄ per liter of solution has a density of 1.329 g/cm³. Calculate the:
 - (a) Mass percentage of this solution
 - (b) The mole fraction of this solution
 - (c) The molarity of H₂SO₄ of this solution

The molarity of H₂SO₄ of this solution

571.6 g H ₂ SO ₄	1 mol H ₂ SO ₄	5.826 M H ₂ SO ₄
1L solution	98.086 g H ₂ SO ₄	

Mass percentage of this solution

571.6 g H ₂ SO ₄	1 mL sol'n x100	=43.01% H ₂ SO ₄ by mass
1000 mL solution	1.329 g sol'n	-

This means there is 56.99 g of water in 100 g of sol'n

The mole fraction of this solution

$$0.4383 \text{ mol H}_2SO_4 = 0.1217$$

3.601 mol in the sol'n