
Comparing Temperature Scales

Name	Class	Date
Chapter 17		Using Science Skills: Making comparisons

Comparing Fahrenheit, Celsius, and Kelvin Temperature Scales

Answer the following questions by using the chart of the three temperature scales provided by your teacher. Use a straight edge to read the corresponding values of the three scales.

1.	At what temperature does water freeze on the Fahrenheit scale?		
	On the Celsius scale?		
	On the Kelvin scale?		
2.	At what temperature does water boil on the Celsius scale?		
	On the Kelvin scale?		
	On the Fahrenheit scale?		
3.	The weather forecaster predicts that today's high will be 70° . Which temperature scale is being		
	used?		
	What would be the corresponding temperatures on the other two scales?		
4.	"It was so cold yesterday that the temperature only reached 275°!" Which temperature scale is		
	being used?		
	What would be the corresponding temperatures on the other two scales?		
5.	"Today's temperature of 42° in Chicago set a record high for the month of August." Which		
	temperature scale is being used?		
	What would be the corresponding temperatures on the other two scales?		

Deriving the Conversion Factors for the Čelsius and Kelvin Scales

A chart showing the three different temperature scales has been provided for you by your teacher. Use it to complete this activity. Place a straight edge across the Celsius and Kelvin scales to read their corresponding values.

1. Complete the following table and answer the questions that follow it.

	Celsius	Kelvin	
T ₁	30°	٥	
T ₂	40°	0	
$T_2 - T_1$	0	0	
$\frac{T_2 - T_1}{10}$	0	o	

- a. Is an increase of 10 degrees on the Celsius scale also an increase of 10 degrees on the Kelvin
- b. Is the size of one degree on the Celsius scale the same as the size of one degree on the Kelvin
- 2. Complete the following table and answer the question that follows it.

Celsius		Kelvin			
T ₃	50°	T ₄	0		
T ₅	80°	T ₆	0		
$T_4 - T_3 = $ °					
$T_6 - T_5 = $ °					

What number must be added to the Celsius temperature in order to obtain the corresponding Kelvin temperature?

- **3.** Complete the following conversion factors.
 - a. degrees Celsius + _____° = degrees Kelvin
 - **b.** degrees Kelvin ______° = degrees Celsius
- 4. Using the conversion factors you have just derived, solve the following problems.
- **d.** 273°K = _____°C
- **b.** $83^{\circ}\text{C} =$ _____^{\circ}K
- **e.** 100°K = _____°C
- **c.** 100°C = _____°K