Drills

Chapter 1

1) Identify the number of significant figures in each of the following numbers
a 1837
b 302400
c 19.7324
d 8.7300
e 1900.00
f 3.14×10^{4}
g 632
h 3024000.0
i 1900
j 0.00743
k 6005
p 0.08206
18.732
m 149356
n 200000
o 6000
q 14.163000
r 205.8
s 426.1
t 60.0
2) Round off each of the following numbers to four significant figures.
a 6.16782
b 213.25
c 1200.43
d 3135.69
e 6.19648
f 14.163000
g 3024000
h 3.14145×10^{4}
3) Determine the value of each of the following expressions, with the correct number of significant figures.
a $\frac{1.86}{3.14}$
b (6.6262 X $\left.10^{-27}\right)(2567)$
c (37.2)(1.5)
d (200)(87.45)
e $\frac{(998)(32.157)}{36}$
f $\frac{4.51545}{0.15}$
g $104+37.2-18.57$
4) Express each number in scientific notation:
a 0.00374
b 1200
c 4063.89
d 175.1 X
10^{3}
e $6460.40 \times 10^{7} \quad$ f 0.06627×10^{-25}
g 9475×10^{-6}
h 0.00374×10^{7}
i $0.000000142 \times 10^{1} \mathfrak{j} 17645 \mathbf{k} 212,000,000$
10.0000008314
5) Perform the following conversions of units:
a. $7.3 \mathrm{ft}=$ \qquad in.
b $6.40 \mathrm{qt}=$ \qquad mL
d. $16.54 \mathrm{~cm}=\square \mathrm{mm}$
g. $7.30 \mathrm{ft}==\square \mathrm{m}$
e $0.0374 \mathrm{~m}=$ \qquad $\mu \mathrm{m}$
c $12750 \mathrm{yd}=$ \qquad mi
\qquad m^{3}
h $22.4 \mathrm{~L}=$ \qquad gal
f $146 \mathrm{~cm}^{3}=$ \qquad L
j $100 \mathrm{yd}^{3}=$ \qquad
k $1.00 \mathrm{ft}^{3}=$ \qquad in ${ }^{3}$
i $5.15 \mathrm{ft}=$ \qquad cm
6) Perform the following conversion
a $5.00 \mathrm{~cm}^{3}$ water $=? \mathrm{~g} ;$ d water $=1.00 \mathrm{~g} / \mathrm{mL}$
d $1.00 \mathrm{lb} \mathrm{Au}=? \mathrm{~cm}^{3} ; \mathrm{d} \mathrm{Au}=19.3 \mathrm{~g} / \mathrm{mL}$
b $250 \mathrm{~cm}^{3}$ ethanol $=? \mathrm{~g} ;$ d ethanol $=0.789 \mathrm{~g} / \mathrm{mL}$
e 1.00 qt water $=$? lb
c 4.00 lb salt $=$? $\mathrm{cm}^{3} ; \mathrm{d}$ salt $=2.17$
f $5.00 \mathrm{lb} \mathrm{Au}=$? in ${ }^{3}$
i $6.23+915-1012.7$
j $4.30+291+100.3452$
k 204.5-96.5-32.1
$16.47 \times 10^{2}+4.2 \times 10^{1}+6.8$
m (94.3)(12) - $7.62+300.0$
n (5.19 X $\left.10^{-2}+1.83\right)\left(2.19 \times 10^{2}\right)$
o $\frac{(3.18)(2.4)}{1.92}-0.017$
7) Solve the following equations for the indicated variable
a $\mathrm{PV}=\mathrm{nRT}$; solve for R
b $13.6 \mathrm{~h}=1.15 \mathrm{H}$; solve for h
c $V=(4 / 3) \pi \mathrm{r}^{3}$; solve for r
d $\quad \lambda=\mathrm{h} / \mathrm{m} \quad$; solve for
e $69.72=68.95 x+70.99(1-x)$; solve for x
f $14=\frac{\mathrm{x}}{(1-\mathrm{x})} \quad$; solve for x
8) Answer the following problems based on percent composition
a A copper penny has a mass of 3.015 g and contains $95.0 \% \mathrm{Cu}$. What is the mass of copper present?
b An automobile weighs 1.00 ton (short) and contains $13 \% \mathrm{Al}$ and $75 \% \mathrm{Fe}$. What is the mass of Al present?
c Air contains $78 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$. A house 40.0 ft X 30.0 ft X 14.0 ft contains how many liters of nitrogen? How many liters of air must one have in order to have 680 L of oxygen?
d A solution of 36.00% sulfuric acid in water has a density of $1.271 \mathrm{~g} / \mathrm{mL}$. How many grams of sulfuric acid (not sulfuric acid solution) are needed to make 5.00 L of this solution?
e The compound silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ contains $63.5 \% \mathrm{Ag}$. If Ag costs $\$ 12.00 / \mathrm{oz}$, what is the value of the silver in 125 g of sliver nitrate? What mass of silver nitrate in grams contains a dollars worth of Ag?

Answer Key: Chapter 1
Identify the number of significant figures in each of the following numbers

a 4	b 4	c 6	d 5	e 6
f 3	g 3	h 8	i 2	j 3
k 4	1 4	m 6	n 1	o 1
p 4	q 8	r 4	s 4	t 3

1) Round off each of the following numbers to four significant figures.

a 6.168	b 213.3	c 1200.	d 3136
e 6.196	f 14.16	g 3.024×10^{6}	h 3.141×10^{4}

2) Determine the value of each of the following expressions, with the correct number of significant figures.

a 0.592	b 1.701×10^{-23}	c 56
d 2×10^{4}	e 8.9×10^{2}	f 30.
g 123	h 87.6	i -91
j 396	k 75.9	16.96×10^{2}
m 1.4×10^{3}	n 4.12×10^{2}	o 4.0

3) Express each number in scientific notation:

a 3.74×10^{-3}	b 1.2×10^{3}	c 4.06389×10^{3}	d 1.751×10^{5}
e 6.46040×10^{10}	f 6.627×10^{-27}	g 9.475×10^{-3}	h 3.74×10^{4}
i 1.42×10^{-6}	j 1.7645×10^{4}	k 2.12×10^{8}	1 8.314×10^{-7}

4) Perform the following conversions of units:

a $\quad 88 \mathrm{in}$.	b $6.04 \times 10^{3} \mathrm{~mL}$	c 7.244 mi
d $\underline{165.4 \mathrm{~mm}}$	e $37400 \mu \mathrm{~m}$	f 0.146 L
g 2.22 m	h 5.94 gal	i 157 cm
j $8 \times 10^{1} \mathrm{~m}^{5}$	k $\underline{1.73} \times 10^{3} \mathrm{in}^{3}$	$\mathbf{1} \underline{4.1 \mathrm{~L}}$

5) Perform the following conversions

$\mathbf{a} 5.00 \mathrm{~g}$	b $2.0 \times 10^{2} \mathrm{~g}$	c $836 \mathrm{~cm}^{3}$
$\mathbf{d}=23.5 \mathrm{~cm}^{3}$	e 2.08 lb	f $7.17 \mathrm{in}^{3}$

6) Solve the following equations for the indicated variable

a $\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{nT}}$	b $\mathrm{h}=\frac{1.15 \mathrm{H}}{13.6}$	c $\mathrm{V}=(4 / 3) \pi \mathrm{r}^{3} ;$ solve for r
$\mathrm{n}=\sqrt[3]{\frac{\mathrm{V} 3}{\pi 4}}$		
d	$\mathrm{e} \times=0.62$	$\mathrm{f} x=0.93$

7) Answer the following problems based on percent composition
a $\quad 3.015 \mathrm{~g} \mathrm{X} \frac{95.0 \mathrm{~g} \mathrm{Cu}}{100 \mathrm{~g} \text { pennies }}=2.86 \mathrm{~g} \mathrm{Cu}$
b $1.00 \operatorname{ton} \mathrm{X} \frac{2000 \mathrm{lb}}{1 \text { ton }} \times \frac{453.6 \mathrm{~g}}{1 \mathrm{lb}} \times \frac{13 \mathrm{~g} \mathrm{Al}}{100 \mathrm{~g} \mathrm{car}}=1.18 \times 10^{5} \mathrm{Al}$
c Vol. of house $=40.0 \mathrm{ft} \times 30.0 \mathrm{ft}$ X14.0 ft $=1.68 \times 10^{4} \mathrm{ft}^{3}$ air
$=$

$$
680 \mathrm{~L} \mathrm{X} \frac{100 \mathrm{~L} \text { air }}{21 \mathrm{~L} \mathrm{O}_{2}}=3.2 \times 10^{4} \mathrm{~L} \text { air }
$$

d $\quad 5.00 \mathrm{~L}$ sol $\mathrm{X} \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1.271 \mathrm{~g} \mathrm{sol}}{1 \mathrm{~mL} \mathrm{sol}} \quad \mathrm{X} \frac{36.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{100 \mathrm{~g} \mathrm{sol}}=2.29 \quad 10^{3}$
e $\quad 125 \mathrm{~g} \mathrm{Ag} \mathrm{X} \frac{63.5 \mathrm{~g} \mathrm{Ag}}{100 \mathrm{~g} \mathrm{AgNO} 3} \quad \times \frac{1 \mathrm{lb}}{453.6 \mathrm{~g}} \quad \times \frac{16 \mathrm{oz}}{1 \mathrm{lb}} \quad \times \frac{\$ 12.00}{1 \mathrm{oz}}=\$ 34.5$
$\$ 1.00 \mathrm{Ag} X \frac{1 \mathrm{oz}}{\$ 12.00} \quad X \frac{1 \mathrm{lb}}{16 \mathrm{oz}} \quad \times \frac{453.6 \mathrm{~g}}{1 \mathrm{lb}} \quad X \frac{100 \mathrm{~g} \mathrm{AgNO}_{3}}{63.5 \mathrm{~g} \mathrm{Ag}}=3.72 \mathrm{~g} \mathrm{AgNO}_{3}$

