WS 7 Valence Shell Electron Pair Repulsion (VSEPR): _

Electron group	Molecula r	Drawing 3-D	Bond angle	Bond polari	Dipole moment	
arrangemen	chana	structur	angro	Perar		

A bond angle is the angle made by three connected nuclei in a molecule. By convention, the bond angle is considered to be between 0° and 180°. Electron domains have characteristic angles and structures. For example, a central atom with two regions of electron density is considered linear with a bond angle of 180°. Structures that are more complex have multiple angles. We start by examining the bond angles and regions of electron density of simple molecules. These orientations lead us to basic molecular shapes. Now we will examine the bond angles and regions of electron density of simple molecular polarity.

Part 1: Bond angles and electron domains

Molecular formula	Lewis structure	Bond angle	Bond angle value CAChe	# Regions of electron density	# Bonding domains	# Nonbonding domains
CO ₂	<u>⊽</u> =c= <u>⊽</u>	∠0C0	180°	2	2	0
нссн	Н−С≡С−Н	∠HCC	180°	2	2	0
CINNCI	i <u>c</u> i−n=n−ci	∠CINN	117.4°	3	2	1
NO ₃ —		∠ONO	120°	3	3	0
H ₂ CCH ₂		∠нсн	121.1°	3	3	0
CH4	H H—C—H H	∠СНС	109.45°	4	4	0

Table 1:	Bond an	gles and	l bonding	domains	for	some	selected	molecules
----------	---------	----------	-----------	---------	-----	------	----------	-----------

Molecular formula	Lewis structure	Bond angle	Bond angle value CAChe	# Regions of electron density	# Bonding domains	# Nonbonding domains
CH₃Cl	H H—C—Cl H	∠HCCI ∠HCH	109.45° 109.45°	4	4	0
CCl ₄	ובֿו ובֿו–כ–בֿו ובֿו	∠CICCI	109.45°	4	4	0
NH ₃	H H—N: H	∠HNH	107°	4	3	1
PF3	F—P—F	∠FPF	96.3°	4	3	1
H ₂ O	н— <mark>а</mark> н	∠НОН	104.5°	4	2	2
SbF₅	F F F F F	a∠FSbF e∠FSbF	90° 120°	5	5	0
BrF₅	F-BFF	∠FBrF	84.8°	6	5	1
CF3	Scimp F	∠FCIF	81.5	5	3	2

Bond angles calculated with MOPAC, CAChe. MOPAC calculations yield bond orders, bond lengths, and bond angles that are generally in good agreement with experimental evidence.

Questions to get you thinking

- 1. How are the bonding domains on a given atom with a molecule determined?
- 2. The bond angles can be grouped, roughly around three values, what are these three values?

3. How is the number of non-bonding domains on a given atom with in a mole determined?

4. What correlation can be made between the values in the last two columns of the table above and the groupings from the last question?

5. Look at the information for ammonia and phosphorus tri-fluoride. They have the same molecular geometry. What is it? Are the bond angles the same? If they are not the same, explain why based on lone pairs and sizes of atoms. Nitrogen trifluoride has the same molecular geometry and a bond angle of 102°. Does this information fit into your theory about the differences in the bond angles?

6. Antimony penta-fluoride and bromine penta fluoride have the same number of fluorine's. Are their molecular geometries the same? How does this difference affect their bond angles?

7. Nitrate and nitrite have the same electron geometry but different molecular geometries. Thinking about electron pair repulsions, what can you conclude about bond angles based on these two molecules (polyatomic ions). You can draw a similar conclusion by examining the structures of ethane (C_2H_4) and dinitrogen dichloride. $\angle CINN = 117^\circ$ (close to 120°) in CINNCI. 8. Each of the following molecules has more than one "central atom". For each molecule, draw its Lewis structure. Determine the molecular shape and the electron pair geometry. When possible, give approximate bond angles.

a) XeF_2

b) OF₂

c) CH₃OH

d) CH_3CO_2H

Part 4: Bond Polarity And Dipole Moments

Molecule AB	Moment	Geometry	Molecule AB2	Moment	Geometry
	(μ, D)			(µ, D)	
HF	1.78	Linear	H ₂ O	1.85	bent
HCI	1.07	Linear	H₂S	0.95	Bent
HBr	0.79	Linear	SO ₂	1.62	Bent
HI	0.38	Linear	CO ₂	0	linear
H ₂	0	Linear			
		Linear			
Molecule AB ₃	Moment (µ, D)	Geometry	Molecule AB4	Moment (µ, D)	Geometry
NH₃	1.47	Trigonal- pyramidal	CH₄	0	Tetrahedral
NF ₃	0.23	Trigonal- pyramidal	CHCl₃	1.04	Tetrahedral
BF ₃	0	Trigonal-planar	CH ₂ Cl ₂	1.60	Tetrahedral
			CCl ₄	0	Tetrahedral
			CH₃CI	1.89	Tetrahedral
			CH₃Br	1.82	Tetrahedral
			CH₃I	1.62	Tetrahedral

Dipole moments of selected molecules

1. Ammonia and nitrogen tri-fluoride have the same geometry. Thinking about the different bonds in the two molecules, what is the affect of the lone pair and these polar bonds on the overall dipole moment of the two molecules.

2. Looking at the dipole moment for boron tri-fluoride and nitrogen tri-fluoride, the number of atoms is the same, yet the dipole is very different. Explain why.

3. Explain the trend of the dipole moment for the molecules H-X.

4. Looking at the methane series for AB₄, what molecule has the largest dipole moment? Which one has the smallest, non-zero dipole moment? What is different about their structures? What is the effect of the differences on the dipole? Do you think the ∠HCCI and ∠HCH bonds are the same for all of the molecules? What about the ∠CICCI bonds?

5. Based on the bond polarities for the methane series of CH_3X , predict the dipole moment of CH_3F .