Name $\qquad$

PROBLEM 3: (3 points) What is the molarity of a solution made by dissolving 0.75 g of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ in enough water to make $125-\mathrm{mL}$ of solution?

PROBLEM 7: ( 7 points) When 29.5 g of methane and 45.0 g of chlorine gas undergo a reaction that has a $85.0 \%$ yield, what mass of chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$ forms? (The second product is $\left.\mathrm{HCl}_{(\mathrm{g})}\right)$

PROBLEM 8: (7 points) Acenaphthoquinone is a molecule based on quinone. It is insoluble in water, but soluble in alcohol. It is used in the manufacturing of dyes, pharmaceuticals, and pesticides. Determine the empirical formula of acenaphthoquinone $79.12 \% \mathrm{C}, 3.32 \% \mathrm{H}$, and $17.57 \%$ O by mass.

PROBLEM 11: (10 Points) In a combustion analysis of 23.2 g sample of aspartame containing carbon, hydrogen, and oxygen was burned in excess oxygen and yielded 52.8 g of $\mathrm{CO}_{2}$ and 21.6 g of water. Determine the empirical formula of the compound. A sample of 0.00829 g aspartame contains 0.0000357 mole of aspartame. What is the molecular formula?

PROBLEM 13: (6 point) A student mixed 200.0 mL of $6.00 \mathrm{M} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}, 400.0 \mathrm{~mL}$ of 1.00 M $\mathrm{NaNO}_{3}, 400.0 \mathrm{~mL}$ of $0.500 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and enough water to make 2000.0 mL of solution. What is the molarity of the nitrate ion $\left(\mathrm{NO}_{3}^{-}\right)$in the final solution?

PROBLEM 14:(6 points) A sulfuric acid solution containing 571.6 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ per liter of solution has a density of $1.329 \mathrm{~g} / \mathrm{cm}^{3}$. [MW $\left.=98.086 \mathrm{~g} / \mathrm{mol}\right]$

Calculate the:
a. Mass percentage of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in this solution
b. The mole fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in this solution
c. The molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of this solution

PROBLEM 15: (5 points) Rust stains can be removed by washing a surface of a piece of steel with a dilute solution of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$.

The reaction is $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+6 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{3-}{ }_{(a q)}+3 \mathrm{H}_{2} \mathrm{O}_{(1)}+6 \mathrm{H}^{+}{ }_{(\text {aq) }}$.
What mass of rust can be removed from the surface of steel by 1.0 L of a 1.14 M solution of oxalic acid?

PROBLEM 17: (10 points) A precipitate forms when aqueous sodium sulfide is mixed with aqueous copper(II) chloride. Calculate the mass of the precipitate that forms when 75.0 mL of 1.50 M sodium sulfide is mixed with 100.0 mL of 0.500 M copper(II) chloride. Hint: Write the equation for the reaction.

