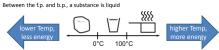

Lecture 2 Goals

- Slides covering McMurry Ch 1.2 1.10
 - Lots of background info you will use all semester!
 - This material will prepare you for Homework #1, due next Saturday
- The short list of (potential exam) topics to know:
 - 1.1* Physical vs. chemical change (see also 1.6*)
 - 1.2 Describe the states of matter (solid, liquid, gas) at the atomic scale
 - 1.3 Pure vs. mixture, homogeneous vs. heterogeneous, element vs. compound
 - 1.4 Memorize first 30 elements & symbols, plus Br, I, Ag, Au, Hg, Pb, Ba, Cd, Sn
 - 1.5 Find metals, nonmetals, and metalloids on the periodic table
 - 1.6* Understand the terms: (chemical) reaction, reactants, and products
 - 1.7 Know your standard units (g, cm, °C, etc.) and Metric prefixes (nano-kilo)
 - 1.8 Know the meaning of mass/weight, length, and volume
 - 1.9 Know how to count significant figures (sig figs or s.f.), especially whether or not to count any zeros. There is always one uncertain digit at the end.
 - 1.10* Practice scientific notation until you are good at it!!!
 - * You may need to self study Ch 1.1, 1.6, and 1.10, if we run out of time in lecture.

1.2 States of Matter

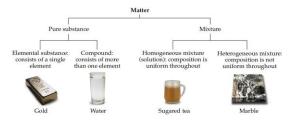


A <u>change of state</u> is always a <u>physical change</u>... ...because the chemical identify of the matter is not altered.

Example: Steam (g), water (l), and ice (s) are the same chemical species (H₂O) at different states. Each blue dot represents a water "molecule," the smallest indivisible unit of water.

Why do different states exist?

- · Temperature is the common explanation
 - Below its freezing point (f.p.), a substance is a solid
 - Above its boiling point (b.p.), a substance is a gas



- · In chemistry, temperature is a measure of energy
 - Higher Temp means more molecular kinetic (motion & vibration) energy
 Solid molecules have the lowest energy and the least motion
 - Molecules are fixed in place and only vibrate
 Liquid molecules have intermediate levels of energy and motion
 - Molecules move freely around each other (and also vibrate)
 - Gas molecules have the highest energy and the most motion
 They fly about freely at high speed (and also vibrate)

Microscopic vs Macroscopic characteristics

	Microscopic		Macroscopic
	The atoms/molecules are	They look like:	The bulk materials is
solid	touching and fixed into a rigid lattice (array).		rigid, and has surfaces
liquid	touching yet free to move about No lattice.		fluid (not rigid) to take shape of the container, and has a surface
gas	flying around with large distances in between.	()) () () () () () () () () (fluid to completely fill container, without any surface.

1.3 Classification of Matter

Note that <u>mixing</u> is always a <u>physical change</u>. Transformations among elements and compounds are <u>chemical changes</u>.

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

But what is an element??? If it's an element, it's on the periodic table.

ù	Be											- 11	B	ĉ	Ň	0	ŕ	N
Na	Mg												n Al	Si	P	S S	čI	A
"K	ča		2H Sc	TI	V	Čr	Mn	Fe	Co	a Ni	Cu	ž	Ga	32 Ge	As	Se	Br	ĸ
nin Rb	зя Sr		Y Y	źr	Nb	Mo	Ťc	Ru	Rh	Pd	Âg	cd	În	si Sn	Sb	Te	1 1	X
ss Cs	Ba	\$7.70 *	Lu	72 Hf	Ta Ta	Ŵ	Re	n Os	n Ir	Pt	Au	ня́в	ŤI	Pb	Bi	Ро	At	R
Fr	Ra	89-162 * *	Lr	Řf	Db	Sg	Bh	Hs	Mt	110	111	Uub		Uuq				
'Lant	hanide	series		50 10	59		#1	62	63		45	- 68	er er	idiae 68	69	official and the second	e.	
···Act	inide s	eries	La H Ac	Ce » Th	Pr "Pa	Nd	Pm Np	Sm N Pu	Eu " Am	Gd	Tb "Bk	Dy Cf	Ho	Er 500 Fm	Tm Inn Md	Yb 12 No		

Elements are listed on the periodic table. Compounds contain multiple elements.

Example: Hydrogen (H) and oxygen (O) are elements. Water is a compound with formula H_2O , representing a molecule with two hydrogen atoms and one oxygen atom.

Homo- (same) and Hetero- (different)

- Homogenous same composition throughout
 - "well mixed" at the molecular level
 - Visibly uniform at the macroscopic level

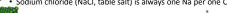
- · sugar dissolved in water
- air (a mixture of pure oxygen, nitrogen, argon, etc.) sugar water
- brass is an alloy (metal mixture) of elements copper and zinc
- Heterogeneous different/variable composition
 - "chunky" with patches of different composition
 - could pick apart into pure substances by hand
 - Examples:

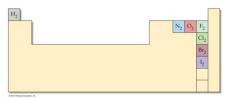
soil

· sand stirred into water

- Examples:

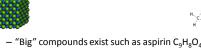
sand water


1.4 Elements and Symbols


- Each element has a unique symbol
 - 1 or 2 letters
 - First letter capitalized
 - Second letter lower case (if present)
- Some element symbols are derived from Latin
 - Au = gold for Latin "aurum" for aura or glow
 - Pb = lead from Latin "plumbum" used for (water) pipes

Chemical Formulas and Compounds

- Compound substance composed of multiple elements
 - elements

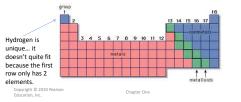

- Compounds always have the same proportions of

- Had • Water (formula H₂O) is always two H per one O
- Sodium chloride (NaCl, table salt) is always one Na per one Cl

Aspirir

C₉H₈O₄

Hg



 Pure elements – just a single element – Mercury has the "formula" Hg Mercury a

1.5 Elements and the Periodic Table

•Elements are roughly divided into 3 groups:

- Metals: Found on the left side of the table
- Nonmetals: Found on the right side of the table
- Metalloids: Found along a diagonal trail between metals and nonmetals

Metals

- Most of the elements (94 of 118), left side of periodic table
- Solid at room temperature (except mercury, Hg)
- Conduct heat and electricity ٠
- Lustrous (shiny)
- · Malleable (bendable) and ductile

Things to Know

- · Names of first 30 elements - plus Br, I, Ag, Au, Hg, Pb, Ba, Cd, Sn
- · Which elements are diatomic molecules
 - Technically, the diatomics are not compounds
 - Recall that compounds have multiple elements

Nonmetals

- Only 18 elements, right side of periodic table
- Tend to be gasses at room temperature
 - 11 gasses, 6 solids, 1 liquid
 - Insulators poorly conduct heat and electricity

chlorine gas

- Brittle (easily cracked) when solid

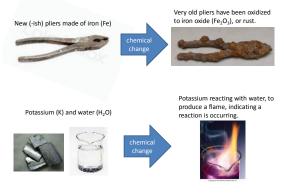
(b) povright © 2010 Pearson Prentice Hall, Inc

Metalloids

- 6 to 8 elements, depending on who's counting
- · Properties intermediate of metals and nonmetals
- Semiconductor properties are important
 - Conductor/insulator properties change with applied voltage
 - Important for the electronics/hardware and emerging nanotechnology industries

1.6 Chemical Changes [study at home]

How do we know when a chemical (as opposed to physical) change has occurred?


A chemical change has occurred when the chemical composition of matter has changed... but you generally can't "see" the molecules!

reaction occurs.

You must infer when a chemical change has occurred. Heat, light, and/or electricity are generally absorbed or emitted when a chemical

Chemical change examples

Dramatic change of properties

- Two deadly chemicals, sodium (Na) and chlorine (Cl), react violently to form edible table salt (NaCl)
- Properties can change dramatically upon reactions

 $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$

Other signs of chemical reaction

3

A chemical or physical change?

1.7 Physical Quantities

- Physical quantities are physical properties that can be measured on a number scale
- They <u>always</u> have 2 parts:
 - A number ...
 - … followed by its units.*

*It's minus one point every time you forget the units on an exam. Please don't do this!

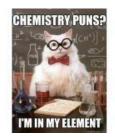
The Metric System*

- There are <u>base units</u> and <u>prefixes</u>
 - base units indicate the type of property: length, mass, temperature, etc.
 - SI and metric base units are similar

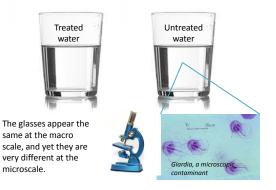
- prefixes form units that differ by powers of ten

TABLE 2.1 Son	ne SI and Metric Units a	and Their Equivalents	
QUANTITY	SI UNIT (SYMBOL)	METRIC UNIT (SYMBOL)	EQUIVALENTS
Mass	Kilogram (kg)	Gram (g)	1 kg = 1000 g = 2.205 lb
Length	Meter (m)	Meter (m)	1 m = 3.280 ft
Volume	Cubic meter (m ³)	Liter (L)	1 m ³ = 1000 L = 264.2 gal
Temperature	Kelvin (K)	Celsius degree (°C)	See Section 2.9
Time	Second (s)	Second (s)	-
	Convright © 201	0 Pearson Prentice Hall Inc.	

*There is no such thing as "English units" in chemistry. Most science agrees.


Other units are "derived" from the base units

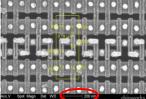
Derived Units					
Quantity	Definition of Quantity	SI Unit			
Area	Length squared	m ²			
Volume	Length cubed	m ³			
Density	Mass per unit volume	kg/m ³			
Speed	Distance traveled per unit time	m/s			
Acceleration	Speed changed per unit time	m/s ²			
Force	Mass times acceleration of object	$kg \cdot m/s^2$ (= newton, N)			
Pressure	Force per unit area	$kg/(m \cdot s^2)$ (= pascal, Pa)			
Energy	Force times distance traveled	$kg \cdot m^2/s^2$ (= joule, J)			


Know the prefixes in blue (nano- to mega-)

Prefix	Symbol	Meaning	Exponential Notation*		
exa	E	1,000,000,000,000,000,000	1018		
peta	Р	1,000,000,000,000,000	1015		
tera	т	1,000,000,000,000	1012		
giga	G	1,000,000,000	10^{9}		
mega	M	1,000,000	10%		
kilo	k	1.000	103		
hecto	h	100	102		
deka	da	10	101		
		1	100		
deci	d	0.1	10-1		
centi	c	0.01	10^{-2}		
milli	m	0.001	10-3		
micro	μ	0.000001	10-6		
nano	n	0.00000001	10-9		
pico	p	0.00000000001	10-12		
femto	f	0.00000000000001	10^{-15}		
atto	a	0.0000000000000000000000000000000000000	10^{-18}		

Let's take a 5-minute break.

Pop quiz: Which glass of water to drink?



What is smaller than microscale?

Prefix	Symbol	Meaning	Exponentia Notation*
exa	Е	1,000,000,000,000,000,000	1018
peta	Р	1,000,000,000,000,000	1015
tera	т	1,000,000,000,000	1012
giga	G	1.000,000,000	109
mega	M	1,000,000	106
kilo	k	1,000	103
hecto	h	100	102
deka	da	10	101
_		1	100
deci	d	0.1	10-1
centi	c	0.01	10^{-2}
milli	m	0.001	10-3
micro	11	0.000001	10^{-6}
nano	n	0.00000001	10^{-9}
pico	р	0.0000000001	10-12
femto	f	0.00000000000001	10^{-15}
atto	a	0.0000000000000000000000000000000000000	10^{-18}

Can you visualize a billionth?

in a small computer chip is common. What do these devices look like?

An electron microscope shows individual devices, measured in nanometers.

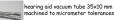
Can you think of other things measured in billions/billionths?

A brief history of the smaller and smaller (Not on any exam.)

Millimeter sized, interchangeable gears

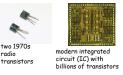
 Eli Whitney's cotton gin in 1793
 A human-smachine w

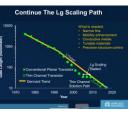
• Micrometer tolerances & computer aided design

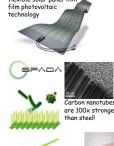


Toyota's continuous improvement (kaizen) over the 20th Century

But this is not small enough for digital computing!




hearing machine



Solid state technology (not on exam)

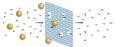
- Transistor invented 1947
 - Layers of solid materials (semiconductors) with novel electrical properties
 - No moving parts chemical synthesis/etching
- Manufactured at exponentially decreasing scale over time
 - 1970s ~3 micrometer gate length
 - 2020 10 nanometer gate length

flexible solar panel thin

"nano-swords" for antimicrobial protection. on my sneakers!

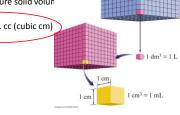
nano-crystal studded glass

drug delivery


Smart fingertip electronics

SEM image of 300 nm VO_2 thin film on silicon water. It could generate electricity instead of dissipating heat.

nano


everywhere!

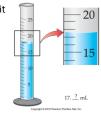
graphene, a single layer of carbon, acts as a water filter

1.8 Volume is "derived" from length

- Measure of the amount of 3-D space occupied by a substance.
- SI unit = cubic meter (m³)
- Commonly measure solid volun in cm³
- 1 mL = 1 cm³ or 1 cc (cubic cm)

Copyright © Cengage Learnin All rights reserved

1.9 Measurement uncertainty (sig figs)


- Chemists follow a convention when making any measurement
 - State all known digits from the measurement device
 - Then guess the very last digit

Step 1. Each horizontal line indicates 1 mL.

Step 2: The liquid level is clearly above 17 mL and clearly below 18 mL.

Step 3. Guess the last digit. It's about half way between 17 and 18 mL, so a good guess would be 17.5 mL. Other readings such as 17.6 mL or 17.4 mL would also be acceptable.

Step 4: The measurement has 3 significant figures, and the last is implied to be a guess.

- How many sig figs on top?
- How many sig figs on bottom?

Why do we use sig figs???

- Below are two measurements of the mass of the same object from two different balances
- The *same* quantity is being *described* at two different levels of precision

```
Uncertain digit

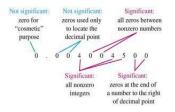
54.07 g A mass between 54.06 g and 54.08 g (±0.01 g)

Uncertain digit

54.071 38 g A mass between 54.071 37 g and 54.071 39 g (±0.000 01 g)
```

The chemist measuring 54.07138 g (7 sig figs) has a more precise (and thus more costly) instrument than the one reporting only 4 sig figs.

You can "read between the lines" of a lab report to understand the precision of the equipment used for the measurements. This helps the reader understand the uncertainty (amount of potential error) in the results.


Counting sig figs I

- Nonzero integers are always significant figures
 - 3456 has 4 sig figs
 - 3456.789 has 7 sig figs
- Zeros in the middle ("captive zeros") are significant, just like any digit
 - 3406, 3006, and 3056 all have 4 sig figs
 - 3056.789, 3406.789, 3450.789, 3456.089, 3056.709, 3400.709, 3000.009 (and other variations) all have 7 sig figs
- Zeros up front ("leading zeros") don't count
 - 03456 and 0003456 are the same numerically as 3456.
 all have 4 sig figs.
 - Sometimes your calculator, instrument, or odometer will print out leading zeros. Just ignore these.

Counting sig figs II

- Trailing zeros (at end of number) are significant only if there is a decimal point
 - 1.500 has 4 sig fig
 - precise to ±0.001 (last digit is a guess)
 - Assume the true value is between 1.499 and 1.501
 - 1500 has only 2 sig figs
 - Precise to the hundreds digit (second from left) or ± 100
 - Assume the true value is between 1400 and 1600
 - 1500. has 4 sig figs
 - Note the "dot" or decimal after the last zero!
 - Special notation for Chem 30A. (Scientific notation is better.)
 - Here, implies precision to the ones digit or $\pm\,1$
 - Assume the true value is between 1499 and 1500

Summary of zeros

The dot (for Intro Chem only!!!)

- What's the distance to the sun?
 - 150. million kilometers (note the dot 3 sig fig)
 - or 150. x 10⁶ kilometers
 - or $1.50 \times 10^2 \times 10^6$ kilometers
 - or 1.50 x 10⁸ kilometers

- * 1.50 x 10^8 km clearly has 3 sig figs
 - 150,000,000 km would be ambiguous (looks like 2 sig fig??)
 - Scientific notation is vastly superior to the "dot" notation
 - Especially for really big or really small numbers

Exact numbers

- Some numbers are exact.
 - There is no guess here. All digits are significant.

- Counting

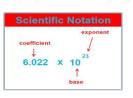
- There are 32 students in the classroom. (2 sig fig)
- There are 30 students in the classroom. (also 2 sig fig)
- Buckminsterfullerene is a molecule with 60 carbons (2 sig fig)

- Definition

- A triangle has (exactly) 3 sides
- 1 inch = 2.54 cm (exactly by definition)
- Diameter of a circle is half (½) the radius.

Buckminsterfullerene (C_{60})

1.10 Scientific Notation [study at home]


- Technique used to express very large or very small numbers.
- Expresses a number as a product of a number between 1 and 10 and the appropriate power of 10.

Number

between

1 and 10

 $93,000,000 = 9.3 \times 10,000,000 = 9.3$

Using Scientific Notation

• If the decimal point is moved to the left, the power of 10 is positive.

$345 = 3.45 \times 10^2$

• If the decimal point is moved to the right, the power of 10 is negative.

 $0.0671 = 6.71 \times 10^{-2}$

That's a wrap!

- Get started with Homework #1 while the material is fresh.
 Be sure to do your own work
- Studying while lecture material is fresh will greatly reduce your required study time!
- If you get stuck with the homework, ask for help from your professor (email), a classmate, a friend, or tutor.
- Bring printouts (lab manual, lecture notes, HW #2) to the next class meeting.
- Consider reading through Ch 2.3 (isotopes) before next class meeting.