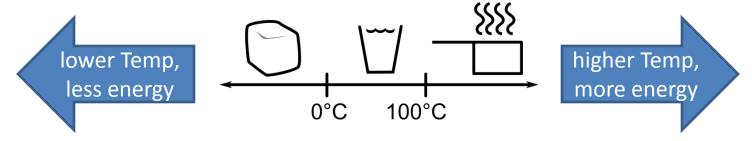

Lecture 2 Goals

- Slides covering McMurry Ch 1.2 1.10
 - Lots of background info you will use all semester!
 - This material will prepare you for Homework #1, due next Saturday
- The short list of (potential exam) topics to know:
 - 1.1* Physical vs. chemical change (see also 1.6*)
 - 1.2 Describe the states of matter (solid, liquid, gas) at the atomic scale
 - 1.3 Pure vs. mixture, homogeneous vs. heterogeneous, element vs. compound
 - 1.4 Memorize first 30 elements & symbols, plus Br, I, Ag, Au, Hg, Pb, Ba, Cd, Sn
 - 1.5 Find metals, nonmetals, and metalloids on the periodic table
 - 1.6* Understand the terms: (chemical) reaction, reactants, and products
 - 1.7 Know your standard units (g, cm, °C, etc.) and Metric prefixes (nano-kilo)
 - 1.8 Know the meaning of mass/weight, length, and volume
 - 1.9 Know how to count significant figures (sig figs or s.f.), especially whether or not to count any zeros. There is always one uncertain digit at the end.
 - 1.10* Practice scientific notation until you are good at it!!!

^{*} You may need to self study Ch 1.1, 1.6, and 1.10, if we run out of time in lecture.

1.2 States of Matter

The state of matter is typically gas (g), liquid (l), or solid (s).

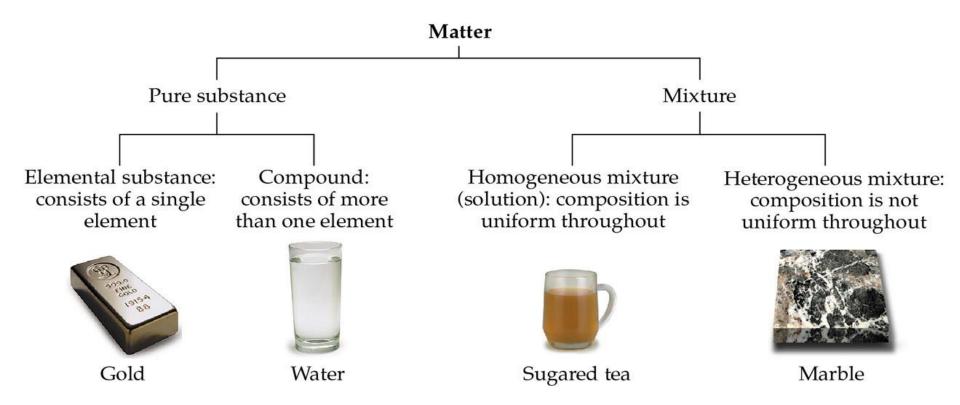

A <u>change of state</u> is always a <u>physical change</u>...

...because the chemical identify of the matter is not altered.

Example: Steam (g), water (l), and ice (s) are the same chemical species (H₂O) at different states. Each blue dot represents a water "molecule," the smallest indivisible unit of water.

Why do different states exist?

- Temperature is the common explanation
 - Below its freezing point (f.p.), a substance is a solid
 - Above its boiling point (b.p.), a substance is a gas
 - Between the f.p. and b.p., a substance is liquid



- In chemistry, temperature is a measure of <u>energy</u>
 - Higher Temp means more molecular kinetic (motion & vibration) energy
 - Solid molecules have the lowest energy and the least motion
 - Molecules are fixed in place and only vibrate
 - Liquid molecules have intermediate levels of energy and motion
 - Molecules move freely around each other (and also vibrate)
 - Gas molecules have the highest energy and the most motion
 - They fly about freely at high speed (and also vibrate)

Microscopic vs Macroscopic characteristics

	Microscopic		<u>Macroscopic</u>
	The atoms/molecules are	They look like:	The bulk materials is
solid	touching and fixed into a rigid lattice (array).		rigid, and has surfaces
liquid	touching yet free to move about No lattice.		fluid (not rigid) to take shape of the container, and has a surface
gas	flying around with large distances in between.		fluid to completely fill container, without any surface.

1.3 Classification of Matter

Note that <u>mixing</u> is always a <u>physical change</u>. Transformations among elements and compounds are <u>chemical changes</u>.

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

But what is an element??? If it's an element, it's on the periodic table.

1.0079 lithium	beryllium 4	H										1	boron 5	carbon	ntrogen	oxygen	fluorino	4.0026 neon 10
Li	Be												B	င်	Ň	ô	, F	Ne
6.941 sodium	9.0122 magnesium												10,811 aluminium	12.011 silicon	14,007 phosphorus	15.999 sultur	18,998 chlorine	20,180 argon
11	12	Ş											13	14	15	16	17	18
Na	Mg	9 .											ΑI	Si	Р	S	CI	Aı
22.990 otassium 19	24.305 calcium 20		scandium 21	stanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobatt 27	nicket 28	copper 29	zinc 30	26.982 gallium 31	28.086 germanium 32	30,974 arsenic 33	32.065 selenkm 34	35.453 bromine 35	39.94 krypto 36
K	Ca		Sc	Τi	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kı
39.098	40.078		44.966	47.867	50,942	51.996	54.938	55.845	58,933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79,904	83,80
nubidkum 37	strontium 38		yttrium 39	zirocnium 40	niobium 41	molybdenum 42	technetium 43	rutherium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indum 49	50	antimony 51	telunum 52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85,468 coesium 55	87.62 barium 56	57-70	88.906 lutetum 71	91,224 hafnium	92,906 tantalum	95.94 tungsten	rhenium.	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold 79	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium 84	126.90 astatine	131.2 rador 86
Cs	Ba	×	Ľu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
132.91	137.33	2000	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	209,98	[209]	210	[222]
randum 87	radium 88	89-102	lawrendum 103	rutherfordium 104	dubnium 105	seaborgium 106	107	108	meitnerium 109	ununvilum 110	unununkum 111	ununblum 112		ununquadum 114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
			lanthanum	cenum 58	praseodymium 59	neodymium 60	promethium 61	samanum 62	europium 63	gadolinium 64	torbarra 65	dysprosium 66	holmium 67	ertium 68	thulium 69	ytterbium 70		
Looth	onido	carica	57	29				THE PARTY OF THE P				-		-		3/1		
Lanth	nanide	series	57	1227	110000000000000000000000000000000000000	Nd	Pm	Sm	Eu	Gd	Ib	Dv I	но	L Er	Im	Yb		
Lanth	nanide	series	57 La 138,91	Ce 140.12	Pr 140.91	Nd	Pm	Sm 150.36	Eu 151.96	Gd 157.25	Tb	Dy 162.50	Ho 164.93	Er 167,26	Tm 168.93	Yb 173.04		
	nanide nide s		La	Ce	Pr					10.00100.0011		162.50 californium 98 Cf						

<u>Elements</u> are listed on the periodic table. <u>Compounds</u> contain multiple elements.

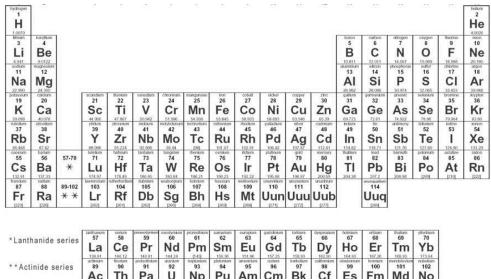
Example: Hydrogen (H) and oxygen (O) are elements. Water is a compound with formula H_2O , representing a molecule with two hydrogen atoms and one oxygen atom.

Homo- (same) and Hetero- (different)

- Homogenous same composition throughout
 - "well mixed" at the molecular level
 - Visibly uniform at the macroscopic level
 - Examples:
 - sugar dissolved in water
 - air (a mixture of pure oxygen, nitrogen, argon, etc.)

sugar water

brass is an alloy (metal mixture) of elements copper and zinc


- Heterogeneous different/variable composition
 - "chunky" with patches of different composition
 - could pick apart into pure substances by hand
 - Examples:
 - sand stirred into water
 - soil

"sand water"

1.4 Elements and Symbols

- Each element has a unique symbol
 - 1 or 2 letters
 - First letter capitalized
 - Second letter lower case (if present)
- Some element symbols are derived from Latin
 - Au = gold for Latin "aurum" for aura or glow
 - Pb = lead from Latin "plumbum" used for (water) pipes

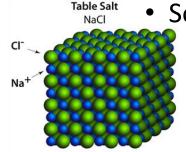
*Lanthanide series	57	58	59	neodymum 60	61	62	63	gadolmum 64	65	dysproskum 66	67	68	69	yttorbaum 70
Lanthamue series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
* * Actinide series	89	90	91	92	93	plutonium 94	americium 95	96	97	98	einsteinium 99	100	101	102
CIM TEC SALTS	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
31	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Things to Know

- Names of first 30 elements
 - plus Br, I, Ag, Au, Hg, Pb, Ba, Cd, Sn
- Which elements are diatomic molecules
 - Technically, the diatomics are <u>not</u> compounds
 - Recall that compounds have multiple elements

Chemical Formulas and Compounds

- Compound substance composed of multiple elements
 - Compounds always have the same proportions of elements

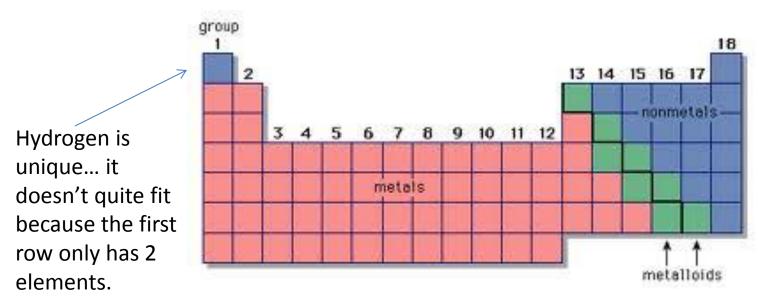


H₂O

Aspirin

• Water (formula H₂O) is always two H per one O

• Sodium chloride (NaCl, table salt) is always one Na per one Cl



- "Big" compounds exist such as aspirin C₉H₈O₄
- Pure elements just a single element
 - Mercury has the "formula" Hg

1.5 Elements and the Periodic Table

- •Elements are roughly divided into 3 groups:
 - **Metals:** Found on the left side of the table
 - Nonmetals: Found on the right side of the table
 - Metalloids: Found along a diagonal trail between metals and nonmetals

Metals

- Most of the elements (94 of 118), left side of periodic table
- Solid at room temperature (except mercury, Hg)
- Conduct heat and electricity
- Lustrous (shiny)
- Malleable (bendable) and ductile


Nonmetals

- Only 18 elements, right side of periodic table
- Tend to be gasses at room temperature
 - 11 gasses, 6 solids, 1 liquid
 - Insulators poorly conduct heat and electricity
 - Brittle (easily cracked) when solid

liquid nitrogen evaporating into gas

sulfur – solid powder

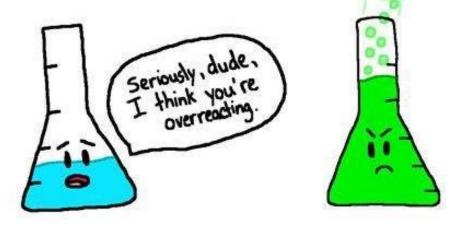
iodine crystals

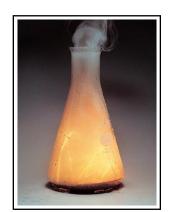
chlorine gas

Copyright © 2010 Pearson Prentice Hall, Inc.

Metalloids

- 6 to 8 elements, depending on who's counting
- Properties intermediate of metals and nonmetals
- Semiconductor properties are important
 - Conductor/insulator properties change with applied voltage
 - Important for the electronics/hardware and emerging nanotechnology industries




silicon – manufactured as a thin "wafer"

1.6 Chemical Changes [study at home]

How do we know when a chemical (as opposed to physical) change has occurred?

A chemical change has occurred when the chemical composition of matter has changed... but you generally can't "see" the molecules!

You must infer when a chemical change has occurred.

Heat, light, and/or electricity are generally absorbed or emitted when a chemical reaction occurs.

Chemical change examples

New (-ish) pliers made of iron (Fe)

Very old pliers have been oxidized to iron oxide (Fe_2O_3), or rust.

Potassium (K) and water (H₂O)


Potassium reacting with water, to produce a flame, indicating a reaction is occurring.

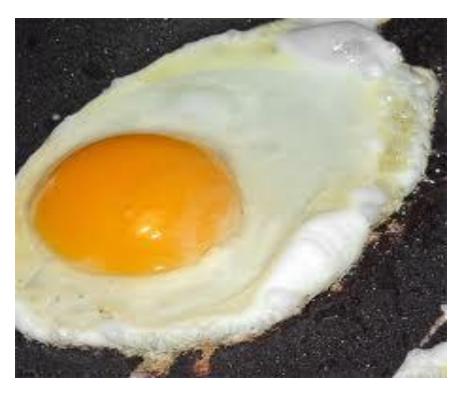
Dramatic change of properties

- Two deadly chemicals, sodium (Na) and chlorine (Cl), react violently to form edible table salt (NaCl)
- Properties can change dramatically upon reactions

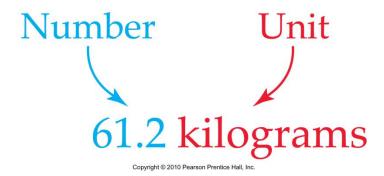
$$2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$$

Other signs of chemical reaction

Nickel (Ni), a solid metal, is mixed with a colorless solution of hydrochloric acid (HCl) in a test tube


- Change in color
- Solid dissolves
- Gas bubbles appear

Copyright © 2010 Pearson Prentice Hall, Inc.


A chemical or physical change?

1.7 Physical Quantities

- Physical quantities are physical properties that can be measured on a number scale
- They <u>always</u> have 2 parts:
 - A number ...
 - ... followed by its units.*

^{*}It's minus one point every time you forget the units on an exam. Please don't do this!

The Metric System*

- There are <u>base units</u> and <u>prefixes</u>
 - base units indicate the type of property: length, mass, temperature, etc.
 - SI and metric base units are similar
 - prefixes form units that differ by powers of ten

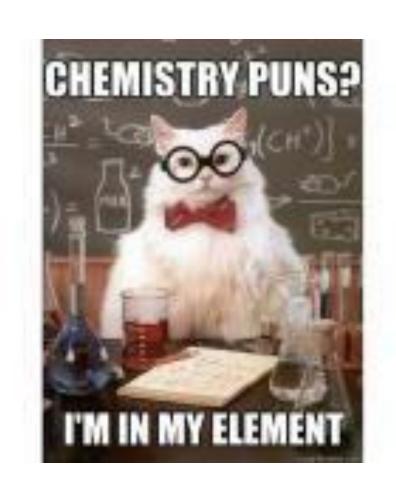
TABLE 2.1 Some SI and Metric Units and Their Equivalents

QUANTITY	SI UNIT (SYMBOL)	METRIC UNIT (SYMBOL)	EQUIVALENTS
Mass	Kilogram (kg)	Gram (g)	1 kg = 1000 g = 2.205 lb
Length	Meter (m)	Meter (m)	1 m = 3.280 ft
Volume	Cubic meter (m ³)	Liter (L)	$1 \text{ m}^3 = 1000 \text{ L}$ = 264.2 gal
Temperature	Kelvin (K)	Celsius degree (°C)	See Section 2.9
Time	Second (s)	Second (s)	_

Copyright © 2010 Pearson Prentice Hall, Inc.

^{*}There is no such thing as "English units" in chemistry. Most science agrees.

Other units are "derived" from the base units

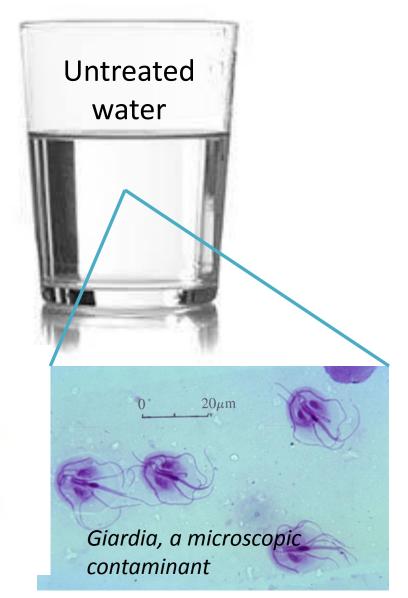

Derived Units		
Quantity	Definition of Quantity	SI Unit
Area	Length squared	m^2
Volume	Length cubed	m^3
Density	Mass per unit volume	kg/m ³
Speed	Distance traveled per unit time	m/s
Acceleration	Speed changed per unit time	m/s^2
Force	Mass times acceleration of object	$kg \cdot m/s^2$ (= newton, N)
Pressure	Force per unit area	$kg/(m \cdot s^2)$ (= pascal, Pa)
Energy	Force times distance traveled	$kg \cdot m^2/s^2$ (= joule, J)

Know the prefixes in blue (nano- to mega-)

Table 1.2 🕨	The Prefixes Used in the SI System (Those m	ost commonly
	encountered are shown in blue.)	

Prefix	Symbol	Meaning	Exponential Notation*
exa	E	1,000,000,000,000,000,000	10^{18}
peta	P	1,000,000,000,000,000	10^{15}
tera	T	1,000,000,000,000	10^{12}
giga	G	1,000,000,000	10^{9}
mega	M	1,000,000	10^{6}
kilo	k	1,000	10^{3}
hecto	h	100	10^{2}
deka	da	10	10^{1}
_		1	10^{0}
deci	d	0.1	10^{-1}
centi	c	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.00001	10^{-6}
nano	n	0.00000001	10^{-9}
pico	p	0.00000000001	10^{-12}
femto	$\hat{\mathbf{f}}$	0.0000000000001	10^{-15}
atto	a	0.0000000000000000000001	10^{-18}

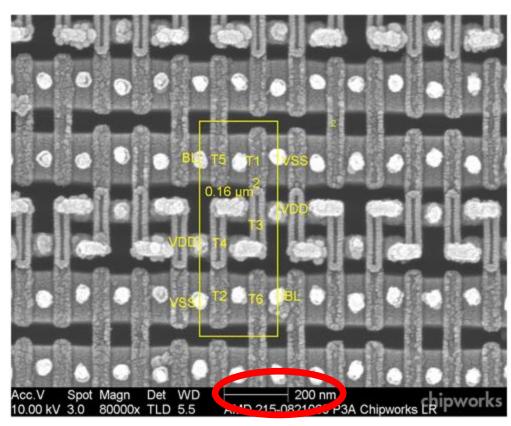
Let's take a 5-minute break.



Pop quiz: Which glass of water to drink?

The glasses appear the same at the macro scale, and yet they are very different at the microscale.

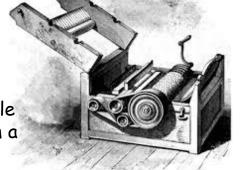
What is smaller than microscale?


			Exponentia
Prefix	Symbol	Meaning	Notation*
exa	E	1,000,000,000,000,000,000	10^{18}
peta	P	1,000,000,000,000,000	10^{15}
tera	T	1,000,000,000,000	10^{12}
giga	G	1,000,000,000	10^{9}
mega	M	1,000,000	10^{6}
kilo	k	1,000	10^{3}
hecto	h	100	10^{2}
deka	da	10	10^{1}
		1	10^{0}
deci	d	0.1	10^{-1}
centi	C	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.00001	10^{-6}
nano	n	0.00000001	10^{-9}
pico	р	0.0000000001	10^{-12}
femto	f	0.00000000000001	10^{-15}
atto	a	0.00000000000000001	10^{-18}

Can you visualize a billionth?

Millions or even billions of "devices" in a small computer chip is common.

What do these devices look like?


An electron microscope shows individual devices, measured in nanometers.

Can you think of other things measured in billions/billionths?

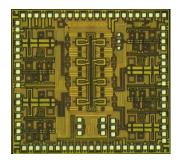
A brief history of the smaller and smaller (Not on any exam.)

- Millimeter sized, interchangeable gears
 - Eli Whitney's cotton gin in 1793

A human-scale machine with a hand crank

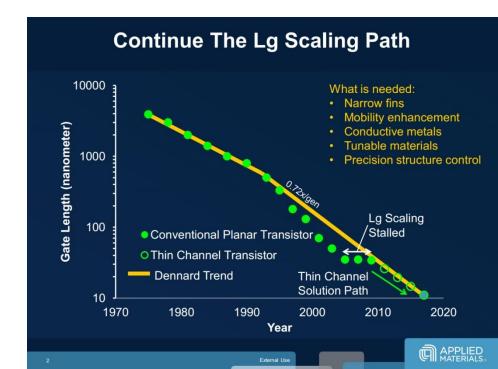
- Micrometer tolerances & computer aided design
 (CAD)
 - -Toyota's continuous improvement (kaizen) over the 20th Century
- But this is not small enough for digital computing!

A digital adding machine made of vacuum tubes.


hearing aid vacuum tube 35x10 mm machined to micrometer tolerances.

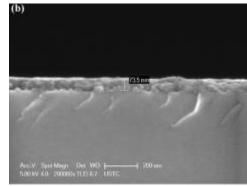
Solid state technology (not on exam)

- Transistor invented 1947
 - Layers of solid materials (semiconductors) with novel electrical properties
 - No moving parts –chemical synthesis/etching



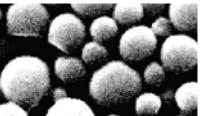
modern integrated circuit (IC) with billions of transistors

- Manufactured at exponentially decreasing scale over time
 - 1970s ~3 micrometer gate length
 - 2020 10 nanometer gate length

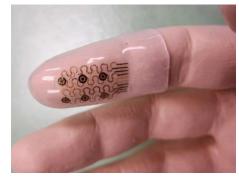


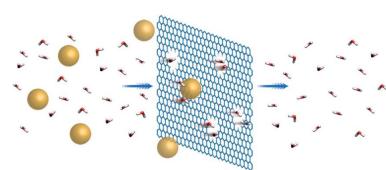
flexible solar panel thin film photovoltaic technology

nano-crystal studded glass changes color to filter light


nano everywhere!

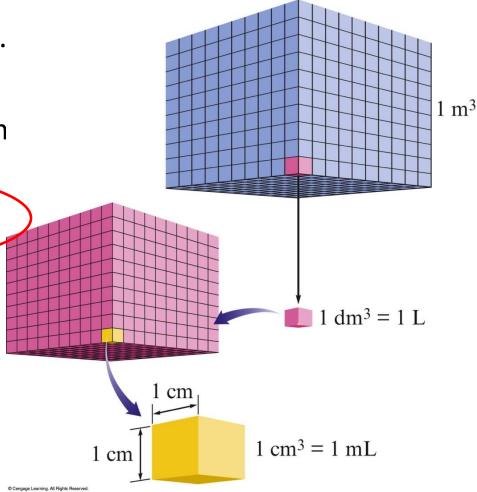
SEM image of 300 nm VO_2 thin film on silicon water. It could generate electricity instead of dissipating heat.


Carbon nanotubes are 100x stronger than steel!


nanospheres for drug delivery

on my sneakers!

Smart fingertip electronics



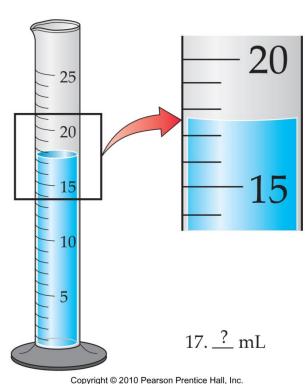
graphene, a single layer of carbon, acts as a water filter

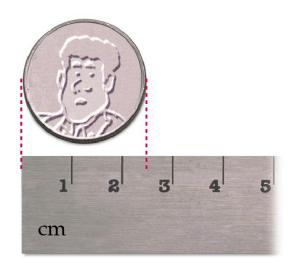
1.8 Volume is "derived" from length

- Measure of the amount of 3-D space occupied by a substance.
- SI unit = cubic meter (m³)
- Commonly measure solid volun in cm³.

• (1 mL = 1 cm³ or 1 cc (cubic cm)

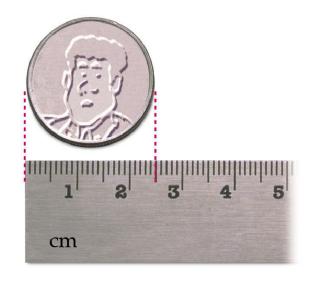
1.9 Measurement uncertainty (sig figs)


- Chemists follow a convention when making any measurement
 - State all known digits from the measurement device
 - Then guess the very last digit


Step 1. Each horizontal line indicates 1 mL.

Step 2: The liquid level is clearly above 17 mL and clearly below 18 mL.

Step 3. Guess the last digit. It's about half way between 17 and 18 mL, so a good guess would be 17.5 mL. Other readings such as 17.6 mL or 17.4 mL would also be acceptable.


Step 4: The measurement has 3 <u>significant</u> <u>figures</u>, and the last is implied to be a guess.

 How many sig figs on top?

© 2002 Pearson Education, Inc., publishing as Benjamin Cummings

 How many sig figs on bottom?

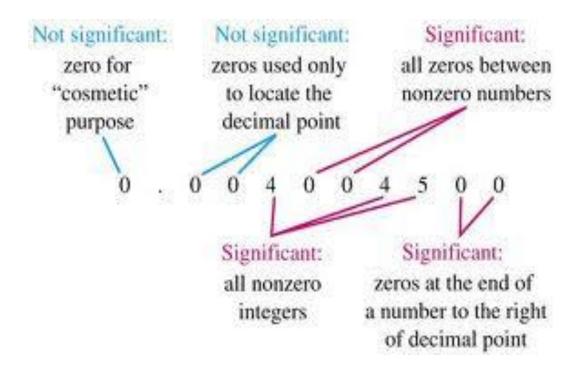
Why do we use sig figs???

- Below are two measurements of the mass of the <u>same object</u> from <u>two different balances</u>
- The same quantity is being described at two different levels of precision

```
Uncertain digit
54.07 \ g \qquad \text{A mass between } 54.06 \ g \ \text{and } 54.08 \ g \ (\pm 0.01 \ g)
\text{Uncertain digit}
54.071 \ 38 \ g \qquad \text{A mass between } 54.071 \ 37 \ g \ \text{and } 54.071 \ 39 \ g \ (\pm 0.000 \ 01 \ g)
\text{Copyright @ 2010 Pearson Prentice Hall, Inc.}
```

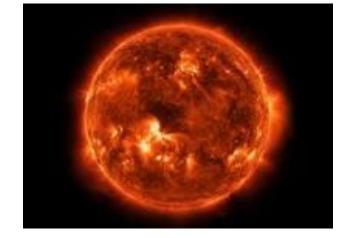
The chemist measuring 54.07138 g (7 sig figs) has a more precise (and thus more costly) instrument than the one reporting only 4 sig figs.

You can "read between the lines" of a lab report to understand the precision of the equipment used for the measurements. This helps the reader understand the uncertainty (amount of potential error) in the results.


Counting sig figs I

- Nonzero integers are always significant figures
 - 3456 has 4 sig figs
 - 3456.789 has 7 sig figs
- Zeros in the middle ("captive zeros") are significant, just like any digit
 - 3406, 3006, and 3056 all have 4 sig figs
 - 3056.789, 3406.789, 3450.789, 3456.089, 3056.709,
 3400.709, 3000.009 (and other variations) all have 7 sig figs
- Zeros up front ("leading zeros") don't count
 - 03456 and 0003456 are the same numerically as 3456.
 - all have 4 sig figs.
 - Sometimes your calculator, instrument, or odometer will print out leading zeros. Just ignore these.

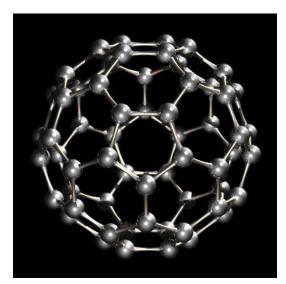
Counting sig figs II


- Trailing zeros (at end of number) are significant only if there is a decimal point
 - 1.500 has 4 sig fig
 - precise to ±0.001 (last digit is a guess)
 - Assume the true value is between 1.499 and 1.501
 - 1500 has only 2 sig figs
 - Precise to the hundreds digit (second from left) or ±100
 - Assume the true value is between 1400 and 1600
 - 1500. has 4 sig figs
 - Note the "dot" or decimal after the last zero!
 - Special notation for Chem 30A. (Scientific notation is better.)
 - Here, implies precision to the ones digit or ± 1
 - Assume the true value is between 1499 and 1500

Summary of zeros

The dot (for Intro Chem only!!!)

- What's the distance to the sun?
 - 150. million kilometers (note the dot 3 sig fig)
 - or 150. x 10 6 kilometers
 - or 1.50 x 10^2 x 10^6 kilometers
 - or 1.50 x 10⁸ kilometers

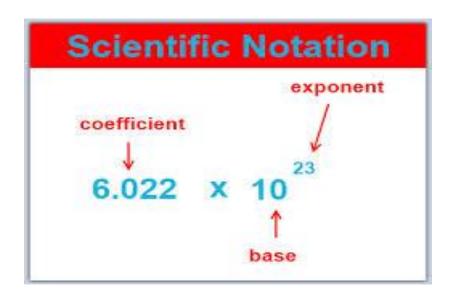

- 1.50 x 10⁸ km clearly has 3 sig figs
 - 150,000,000 km would be ambiguous (looks like 2 sig fig??)
 - Scientific notation is vastly superior to the "dot" notation
 - Especially for really big or really small numbers

Exact numbers

- Some numbers are exact.
 - There is no guess here. All digits are significant.
 - Counting
 - There are 32 students in the classroom. (2 sig fig)
 - There are 30 students in the classroom. (also 2 sig fig)
 - Buckminsterfullerene is a molecule with 60 carbons (2 sig fig)

Definition

- A triangle has (exactly) 3 sides
- 1 inch = 2.54 cm (exactly by definition)
- Diameter of a circle is half (½) the radius.



Buckminsterfullerene (C_{60})

1.10 Scientific Notation [study at home]

- Technique used to express very large or very small numbers.
- Expresses a number as a product of a number between 1 and 10 and the appropriate power of 10.

$$93,000,000 = 9.3 \times 10,000,000 = 9.3$$

Number between 1 and 10

 \times 10⁷
Appropriate
power of 10
(10,000,000 = 10⁷)

Using Scientific Notation

• If the decimal point is moved to the left, the power of 10 is positive.

$$345 = 3.45 \times 10^2$$

• If the decimal point is moved to the right, the power of 10 is negative.

$$0.0671 = 6.71 \times 10^{-2}$$

That's a wrap!

- Get started with Homework #1 while the material is fresh.
 - Be sure to do your own work
- Studying while lecture material is fresh will greatly reduce your required study time!
- If you get stuck with the homework, ask for help from your professor (email), a classmate, a friend, or tutor.
- Bring printouts (lab manual, lecture notes, HW #2) to the next class meeting.
- Consider reading through Ch 2.3 (isotopes) before next class meeting.