5.2 Balancing chemical equations

 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$

- s solid
- I liquid
- *g* gas
- aq aqueous

Another example: do oxygen last...

 C_2H_6 + O_2 \rightarrow CO_2 + H_2O

Case without a "1" stoichiometric coef

A stoichiometric coefficient is the number in front of each chemical species.

 $C_{8}H_{18}(l) + O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(g)$ $C_{8}H_{18}(l) + O_{2}(g) \rightarrow 8CO_{2}(g) + H_{2}O(g)$ $C_{8}H_{18}(l) + O_{2}(g) \rightarrow 8CO_{2}(g) + 9H_{2}O(g)$ $C_{8}H_{18}(l) + 25/2O_{2}(g) \rightarrow 8CO_{2}(g) + 9H_{2}O(g)$ $2C_{8}H_{18}(l) + 25/2O_{2}(g) \rightarrow 16CO_{2}(g) + 18H_{2}O(g)$

5.4 Precipitation Reactions

 A reaction where an insoluble solid (precipitate) forms and falls out of solution

 $\label{eq:pbCrO_4} \begin{array}{l} \text{PbCrO_4} \text{ from } Pb(NO_3)_2 \\ \text{and } K_2 CrO_4 \end{array}$

PbS from $Pb(NO_3)_2$ and $(NH_4)_2S$

Fe(OH)₃ from FeCl₃ and NaOH

 Ag_2CrO_4 from AgNO₃ and K₂CrO₄

Soluble	Exceptions
Ammonium compounds (NH ⁺ ₄)	None
Lithium compounds (Li⁺)	None
Sodium compounds (Na ⁺)	None
Potassium compounds (K ⁺)	None
Nitrates (NO3)	None
Perchlorates (ClO ₄)	None
Acetates (CH ₃ CO ₂)	None
Chlorides (Cl ⁻)	
Bromides (Br)	Ag⁺, Hg₂²⁺, and Pb²⁺ compounds
Iodides (I ⁻)	
Sulfates (SO42)	Ba^{2+} , $\operatorname{Hg}_{2}^{2+}$, and Pb^{2+} compounds

"Solubility rules" for Dr Scott's Chem30A class.

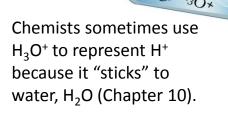
Be able to <u>use this table</u> on the exam. A copy will be provided, along with a periodic table.

Similar "rules" may be found in different textbooks etc. (skip to 5.8) Net Ionic Equations – Precip. Ex.

Molecular Equation:

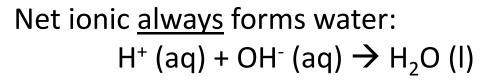
$$\begin{split} \mathsf{Pb}(\mathsf{NO}_3)_2(\mathsf{aq}) + 2\mathsf{KI}(\mathsf{aq}) &\to 2\mathsf{KNO}_3(\mathsf{aq}) + \mathsf{PbI}_2(\mathsf{s}) \\ \hline \textbf{Total lonic Equation:} \\ \mathsf{Pb}^{2+}(\mathsf{aq}) + 2\mathsf{NO}_3^{-}(\mathsf{aq}) + 2\mathsf{K}^+(\mathsf{aq}) + 2\mathsf{I}^-(\mathsf{aq}) &\to \end{split} \\ \begin{split} \mathsf{Never break up} \\ \mathsf{any}(\mathsf{s}),(l) \text{ or }(g) \\ \mathsf{or molecular} \\ (\mathsf{aq}) \text{ species!} \\ & 2\mathsf{K}^+(\mathsf{aq}) + 2\mathsf{NO}_3^{-}(\mathsf{aq}) + \mathsf{PbI}_2(\mathsf{s}) \end{split}$$

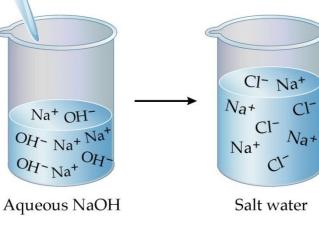
Cancel out the spectator ions to yield the net ionic equation:


$$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$$

5.5 Neutralization: Complete ionic: Acid + Base \rightarrow neutral compounds Net ionic: H⁺ (aq) + OH⁻(aq) \rightarrow H₂O (I)

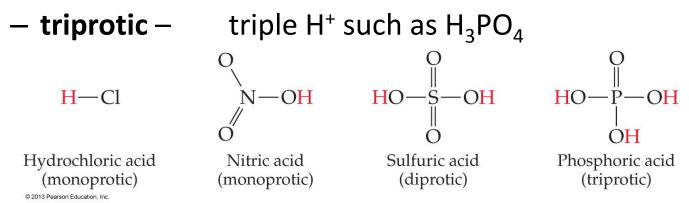
- Acids were among the first known "chemicals"
 - Taste sour
 - Turn litmus (extracts of lichens and cabbages) red
 - Evolve a flammable gas (hydrogen) from metals
- Bases are "the opposite of acids"
 - Taste bitter
 - Turn litmus solution blue
 - Produce aqueous solutions that feel slippery to the touch
- Neutral substances are <u>soluble</u> chemicals (molecules or salts) which are neither acids nor bases
 - Salts are neutral ionic compounds
 - Water (H₂O) is a neutral molecular compound


 The neutralization reaction of an acid with a base yields water plus a *salt*


HCl (aq) + NaOH (aq) \rightarrow NaCl (aq) + H₂O (I)

Aqueous HCl

Note the blue liquid represents pure H_2O .

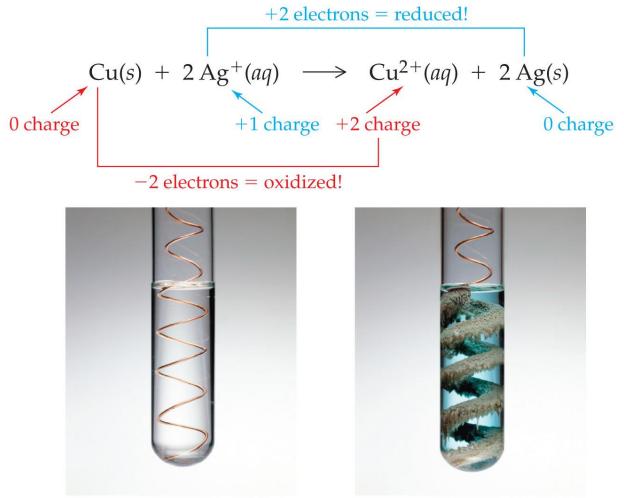


The Na⁺ and Cl⁻ ions do not react... they are <u>spectators</u>. In this case, the salt (NaCl) is soluble and <u>dissolved</u> as ions. That's what NaCl (aq) means – sodium chloride dissolved in water (the aqueous phase).

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Common Acids and Bases

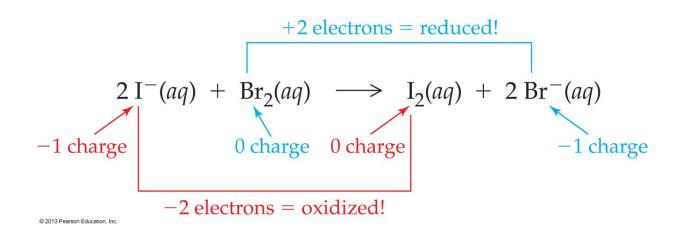
- Acids are present in many foods:
 - Lemons, oranges, and grapefruit contain citric acid, and sour milk contains lactic acid
- Bases are present in many household cleaning agents
 - bar soap, ammonia-based window cleaners, drain openers
- Acids can release multiple protons
 - monoprotic single H⁺ such as HCl
 - **diprotic** double H^+ such as H_2SO_4


5.7 Oxidation Numbers Rules (for atoms)

- 1. Each atom in a <u>pure element has an oxidation number of zero</u>
 - Examples of pure elements: Fe (s), Hg (l), Ar (g), O₂ (g)
- 2. For <u>monatomic ions</u>, the oxidation number is equal to the charge on the ion
 - Example: Na⁺ would have an oxidation number of +1
- 3. For <u>molecules</u>, the oxidation number is similar to charge...
 - Fluorine always has an oxidation number of -1 (except for F_2).
 - The oxidation # of Oxygen is -2
 - Halogens have oxidation number of -1
 - The oxidation # of Hydrogen is (usually) +1...
- 4. The <u>sum of the oxidation numbers</u> for the atoms equals the charge, or zero for a neutral compound.

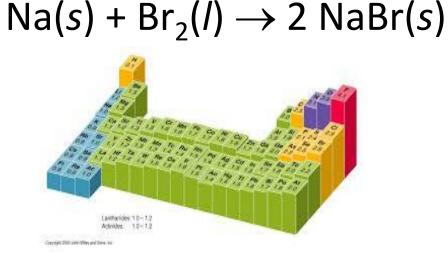
5.8 Redox reactions

- A reducing agent loses one or more electrons
 - Causes reduction
 - Undergoes oxidation itself
 - Loses electrons to become more positive (or less negative)
- An oxidizing agent gains one or more electrons
 - Causes oxidation
 - Undergoes reduction itself
 - To be <u>reduced</u> means the <u>oxidation number</u> goes down
 - Gains electrons to become more negative (or less positive)


Redox, for metals vs metals

This is called plating, not precipitation

© 2013 Pearson Education, Inc.


Redox, nonmetals vs nonmetals

- Here, an iodine ion (as in Nal) gives an electron to bromine, forming bromide ions (as in NaBr) and liberating free iodine
 - An iodide ion is oxidized as its charge increases
 from -1 to 0
 - Bromine is reduced as its charge decreases from 0 to -1

Redox, metals vs nonmetals

- Metals are always oxidized in the presence of a nonmetal
- Nonmetals are always reduced in the presence of a metal

