\qquad

1. How many moles of the products $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ form in a complete reaction of $1.00 \mathrm{~mol} \mathrm{Fe}(\mathrm{OH})_{3}$?
$2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$1.00 \mathrm{~mol} \mathrm{Fe}(\mathrm{OH})_{3} \xrightarrow{? ~ \mathrm{~mol}} \xrightarrow{? \mathrm{~mol}}$
2. How many moles of product form when 0.0050 mol of $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacts completely with NaOH ? And how many moles of NaOH are consumed? $\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+3 \mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(a q)+3 \mathrm{H}_{2} \mathrm{O}$ (I) $0.0050 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \quad$? $\mathrm{mol} \quad$? $\mathrm{mol} \quad ? \mathrm{~mol}$
3. How many moles of reactants $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right.$ and $\left.\mathrm{O}_{2}\right)$ are required to form 6.25 moles of CO_{2} ? How many moles of water are formed?

$$
\begin{gathered}
2 \mathrm{C}_{2} \mathrm{H}_{6}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \\
? \quad ? \mathrm{~mol} \quad ? .25 \mathrm{~mol} \mathrm{CO}_{2} \quad ? \mathrm{~mol}
\end{gathered}
$$

\qquad
4. Provide molar masses for the following, with units.

NaCl	-	$\mathrm{C}_{3} \mathrm{H}_{8}$
O_{2}	-	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$\mathrm{~N}_{2} \mathrm{O}_{5}$	-	Na^{+}

5. a. How many moles of $\mathrm{P}_{4} \mathrm{O}_{10}$ in 10.08 grams?
b. How many moles of H_{2} (hydrogen gas) in 10.08 grams?
c. How many moles of O_{2} (diatomic oxygen gas) in 1.432 g ?
d. How many moles of O (oxygen atoms) in 1.432 g ?
e. How many molecules of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in 1.0 g ?
\qquad
6. How many grams of the products $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ form in a complete reaction of 10.00 grams $\mathrm{Fe}(\mathrm{OH})_{3}$?

$$
\begin{gathered}
2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
10.00 \mathrm{~g} \mathrm{Fe}(\mathrm{OH})_{3} \xrightarrow[?]{? \mathrm{~g}} \xrightarrow{?} \mathrm{~g}
\end{gathered}
$$

7. How many grams of product form when 25.3 grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacts completely with NaOH ? And how many grams of NaOH are consumed?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+3 \mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(a q)+3 \mathrm{H}_{2} \mathrm{O}
$$

$25.3 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$
? g
? g
? g
\qquad
8. Which is the limiting reactant when 5.00 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $15.00 \mathrm{~g} \mathrm{O}_{2}$ are combusted? What is the theoretical yield for $\underline{\mathrm{CO}}_{2} \underline{\text { and water, in grams? }}$

$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$5.00 \mathrm{~g} \quad 15.00 \mathrm{~g} \quad$? g ? G
\qquad
\qquad
9. Balance the below equation. What is the limiting reactant when 12.0 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ reacts with 30.0 g oxygen? What is the theoretical yield for CO_{2} ? How many grams of excess reactant remain?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Limiting reactant:
CO_{2} theoretical yield: \qquad
Excess reactant:
\qquad
9. Calculate the theoretical yield for $\mathbf{A g C l}$ given 15.6 grams of NaCl react with excess AgNO_{3}. What is the percent yield if an experiment produces 23.3 grams of AgCl ?

$$
2 \mathrm{AgNO}_{3}+\mathrm{CaCl}_{2} \rightarrow 2 \mathrm{AgCl}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}
$$

AgCl theoretical yield: \qquad
AgCl percent yield:

