Name:

1. How many moles of the products (Fe₂O₃ and H₂O) form in a complete reaction of 1.00 mol Fe(OH)₃?

2 Fe(OH)₃ (s)
$$\rightarrow$$
 Fe₂O₃ (s) + 3 H₂O (g)

2. How many moles of product form when 0.0050 mol of H₃PO₄ reacts completely with NaOH? And how many moles of NaOH are consumed?

$$H_3PO_4(aq) + 3 NaOH(aq) \rightarrow Na_3PO_4(aq) + 3 H_2O(l)$$

3. How many moles of reactants (C₂H₆ and O₂) are required to form 6.25 moles of CO₂? How many moles of water are formed?

$$2 C_2 H_6 (g) + 7 O_2 (g) \rightarrow 4 CO_2 (g) + 6 H_2 O (g)$$

Name: _____

4. Provide molar masses for the following, with units.

 O_2 (NH₄)₂SO₄ _____

 N_2O_5 Na^+

5. a. How many moles of P_4O_{10} in 10.08 grams?

b. How many moles of H₂ (hydrogen gas) in 10.08 grams?

c. How many moles of O₂ (diatomic oxygen gas) in 1.432 g?

d. How many moles of O (oxygen atoms) in 1.432 g?

e. How many molecules of water (H₂O) in 1.0 g?

Name: _____

6. How many grams of the products (Fe_2O_3 and H_2O) form in a complete reaction of 10.00 grams $Fe(OH)_3$?

2 Fe(OH)₃ (s)
$$\rightarrow$$
 Fe₂O₃ (s) + 3 H₂O (g)
10.00 g Fe(OH)₃ $\stackrel{?}{=}$ $\stackrel{?}{=}$ $\stackrel{?}{=}$ $\stackrel{?}{=}$ $\stackrel{?}{=}$

7. How many grams of product form when 25.3 grams of H₃PO₄ reacts completely with NaOH? And how many grams of NaOH are consumed?

Name:

8. Which is the <u>limiting reactant</u> when 5.00 g of C_2H_6 and 15.00 g O_2 are combusted? What is the theoretical yield for $\underline{CO_2}$ and water, in grams?

$$2 C_2 H_6 (g) + 7 O_2 (g) \rightarrow 4 CO_2 (g) + 6 H_2 O (g)$$

5.00 g 15.00 g ? g ? G

Limiting reactant: ______
CO₂ theoretical yield: _____

Name:				
maille.				

9. **Balance** the below equation. What is the **limiting reactant** when 12.0g of propane (C₃H₈) reacts with 30.0 g oxygen? What is the **theoretical yield for CO₂?** How many grams of **excess reactant** remain?

$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

Limiting reactant:

CO₂ theoretical yield:

Excess reactant:

Name:

9. Calculate the **theoretical yield for AgCl** given 15.6 grams of NaCl react with excess AgNO_{3.} What is the **percent yield** if an experiment produces 23.3 grams of AgCl?

$$2 \text{ AgNO}_3 + \text{CaCl}_2 \rightarrow 2 \text{ AgCl} + \text{Ca(NO}_3)_2$$

AgCl theoretical yield: ______AgCl percent yield: _____