Practice Exam #3

1. How much heat is gained or lost (ΔH) when 1 mole of oxygen gas (O₂) reacts in the following equation? Show the correct sign number of significant figures for ΔH . Also state whether the reaction is exothermic or endothermic.

 $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$ $\Delta H_{rxn} = -1411 \text{ kJ/mol-rxn}$

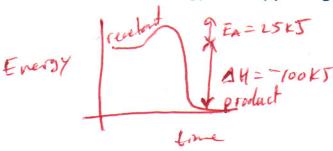
(1 mol 02) (1 mol 1x4) (-14/1 KT) = -470.3 KJ

Exothermic or endothermic?

2. Use Gibbs Free Energy (Δ G) to determine if ammonia will spontaneously boil at 0 °C. Use the data ΔH_{vap} = +23.3 kJ/mol and ΔS_{vap} = +97.1 J/mol·K. Show a calculation for ΔG .

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G = 23.3 \frac{kT}{mol} - (273.15 k) (0.0971 kT)$$


$$= -3.2 kT/mol$$

 $\Delta G = -3200 \text{ J/mol}$

Spontaneous at 350K? yes

3. Draw a reaction diagram (energy vs. time) for an exothermic reaction that releases 100. kJ of energy and has an activation energy of 25 kJ. Label the reactants, products, activation energy, enthalpy change, and both axes.

Name:	
maille.	

4. Use the Le Chatlier principle to predict the effects on the below equilibrium.

Note that all species are in the gas phase (g). \nearrow

$$CO + H_2O$$
 $CO_2 + H_2$ $\Delta H = -41.4 \text{ kJ/mol}$

- a. Does the H₂O level increase, decrease, or stay the same when more H₂ is added? shift < , H201
- b. What happens to H₂O when more CO is added?

shift->, 4,0V

c. What happens to CO₂ when H₂ is removed?

shift -> , co.7

d. What happens to H₂O when more H₂ is removed?

shift -> H201

e. What happens to H₂O when the total pressure is increased?

nothing 2 mol gas = 2 mol gas

f. What happens to H₂ when the temperature is increased?

g. What happens to H₂ when a catalyst is added? nothing.

5. Indicate the strongest type of intermolecular force (IMF) for each of the following as a pure liquid.

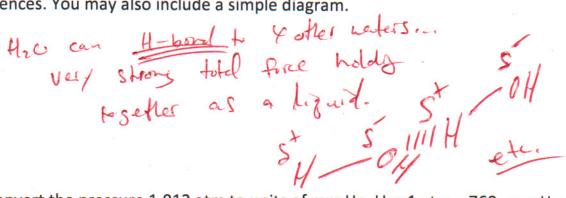
a. water (H2O) H borne

e. hydrogen fluoride gas HF (g) H bon

b. ethanol (CH₃CH₂OH) H H bond f. ammonia (NH₃) H bon

c. dodecane (C₁₂H₂₆) Conton g. ozone (O₃) dipole -dipole dipole dipole dipole h. nitrogen gas (N₂)

Page 2 of 7


	Tractice Examination
Vamor	
Name:	

6. Which has the lower boiling point: I2 or F2? Why? Fx Smaller, less

Fr smaller, less London forces

7. Use the concept of IMFs to explain the high boiling point of water in 1-3 sentences. You may also include a simple diagram.

book.P

8. Convert the pressure 1.012 atm to units of mm Hg. Use 1 atm = 760. mm Hg..

9. A sample of gas has a total pressure of 8086 torr and a nitrogen mole percent of 34%. Calculate the partial pressure of nitrogen.

10. The solubility of oxygen in blood 0.44 g/100 mL at sea level where the partial pressure of oxygen is 165 mm Hg. What is the solubility at a higher elevation where the partial pressure of oxygen is 65 mm Hg? Apply Henry's Law.

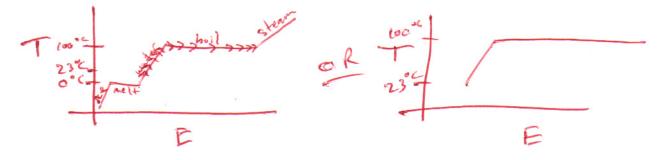
11. Use PV = nRT to calculate the number of moles of gas occupying a volume of 2.13 L at a pressure of 544 mm Hg and a temperature of 44.2 °C. Use R = 0.0821 L·atm/ mol·K.

Page 3 of 7

Chem	30A S	pring	2016	– La	ney	College
Profes	sor Sc	ott B	eaver	-		

Cu col	K5 1/8.09	2/mol)=	2.3 KJ/g
40.68-	Tell il	(18.029)	5/7/2016
_ '		Prac	tice Exam #3
	Name:		

12a. How much energy is gained/released when 5.32 g of water at 100 °C evaporates to form steam, given $\Delta H_{vap} = 40.68 \text{ kJ/mol?}$ Show the correct sign.


DH = + 12.0 KJ boil

12b. How much energy is gained/released when 5.32 g of water is heated from 23 °C to 100 °C? Use $\Delta H = m c_p \Delta T$ and $c_p = 4.184 J/$ °C g.

$$\Delta t = 770c$$
 $\Delta H = m Cp \Delta T$
= $(5.32 g)(4.184 \frac{J}{ccg})(77 °C) = 1700 J = 1.7 kJ$

12c. How much energy is gained/released when 5.32 g of water is both heated from 23 °C to 100 °C and evaporated?

12d. Draw a diagram of Temperature (y-axis) versus Energy (x-axis) for 12c.

13. What is the concentration in units of molarity (M) for 2.48 L of aqueous solution containing 24.6438 g of dissolved NaCl?

ontaining 24.6438 g of dissolved NaCl?

$$M = \frac{\text{third}}{V} = \frac{(24.6438 \text{ g NaCl})(\frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}})}{2.48 \text{ L}} = 0.170 \text{ M}$$

14. Define strong and weak electrolytes in 1-3 sentences.

Page 4 of 7

Chem 30A Spring 2016 – Laney College Professor Scott Beaver 5/7/2016 Practice Exam #3 Name:
15. If the pH of human blood is 7.4, calculate the hydrogen ion concentration [H $^+$]. Use pH = -log([H $^+$]) and [H $^+$] = 10 $^{-pH}$. Give the correct units for [H $^+$]. Watch sig figs!
[H+]= 10^{-9H} = antilog (-7.4) = 3.98107 ×10 10 is shift > 1.0 most
16. Provide the equilibrium reaction between acetic acid (CH ₃ COOH) and acetate
ion (CH3COO) in water. Label the Lewis acid/base and conjugate base/acid. then bok
CHO COOH + HO = HOO + CHO COO (08) at
acetiz 3 water hydronium acetate scientific
CH2 COOH + H2O = H2O + CH2 COO (08) at scientific acetic grank hydronium aceticle organic displayment
17. Find the concentration when 175 mL of a 1.6 M LiCl solution is diluted to 1.0 L.
$M_1 V_1 = M_2 V_2$ $M_2 = \frac{M_1 V_1}{V_2} = (1.4 \text{ M}) \frac{175 \text{ mL}}{1000 \text{ mL}} = 0.28 \text{ M}$
18. A titration experiment uses 20.55 mL of 0.300 M sodium hydroxide (NaOH) to
neutralize 50.00 mL of the diprotic acid sulfuric acid (H ₂ SO ₄). What is the
concentration of the acid? $H_2SO_4 + 2 NaOH \rightarrow 2H_2O + Na_2SO_4$
M= I mol acid
vol acrel
(0 030551 N/OH) (0.300 mol NaOH) (1 mol 4250x
- I/A A J / A C M II C · / A A A A A A A A A A A A A A A A A A

0.05000 L

= 0.0617 M