\qquad

1. How much heat is gained or lost $(\Delta \mathrm{H})$ when 1 mole of oxygen gas $\left(\mathrm{O}_{2}\right)$ reacts in the following equation? Show the correct sign number of significant figures for $\Delta \mathrm{H}$. Also state whether the reaction is exothermic or endothermic.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-1411 \mathrm{~kJ} / \mathrm{mol}-\mathrm{rxn}
$$

$$
\Delta \mathrm{H}=
$$

\qquad
Exothermic or endothermic? \qquad
2. Use Gibbs Free Energy ($\Delta \mathrm{G}$) to determine if ammonia will spontaneously boil at $0^{\circ} \mathrm{C}$. Use the data $\Delta \mathrm{H}_{\text {vap }}=+23.3 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}_{\text {vap }}=+97.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. Show a calculation for $\Delta \mathrm{G}$.

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

$$
\Delta \mathrm{G}=-3200 \mathrm{~J} / \mathrm{mol}
$$

3. Draw a reaction diagram (energy vs. time) for an exothermic reaction that releases 100 . kJ of energy and has an activation energy of 25 kJ . Label the reactants, products, activation energy, enthalpy change, and both axes.
\qquad
4. Use the Le Chatlier principle to predict the effects on the below equilibrium. Note that all species are in the gas phase (g).

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2} \quad \Delta \mathrm{H}=-41.4 \mathrm{~kJ} / \mathrm{mol}
$$

a. Does the $\mathrm{H}_{2} \mathrm{O}$ level increase, decrease, or stay the same when more H_{2} is added?
b. What happens to $\mathrm{H}_{2} \mathrm{O}$ when more CO is added?
c. What happens to CO_{2} when H_{2} is removed?
d. What happens to $\mathrm{H}_{2} \mathrm{O}$ when more H_{2} is removed?
e. What happens to $\mathrm{H}_{2} \mathrm{O}$ when the total pressure is increased?
f. What happens to H_{2} when the temperature is increased?
g. What happens to H_{2} when a catalyst is added?
5. Indicate the strongest type of intermolecular force (IMF) for each of the following as a pure liquid.
a. water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
e. hydrogen fluoride gas HF (g)
b. ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$

f. ammonia $\left(\mathrm{NH}_{3}\right)$
c. dodecane $\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)$
d. diethyl ether

h. nitrogen gas $\left(\mathrm{N}_{2}\right)$
\qquad
6. Which has the lower boiling point: I_{2} or F_{2} ? Why?
7. Use the concept of IMFs to explain the high boiling point of water in 1-3 sentences. You may also include a simple diagram.
8. Convert the pressure 1.012 atm to units of mm Hg . Use $1 \mathrm{~atm}=760 . \mathrm{mm} \mathrm{Hg}$..
9. A sample of gas has a total pressure of 8086 torr and a nitrogen mole percent of 34%. Calculate the partial pressure of nitrogen.
10. The solubility of oxygen in blood $0.44 \mathrm{~g} / 100 \mathrm{~mL}$ at sea level where the partial pressure of oxygen is 165 mm Hg . What is the solubility at a higher elevation where the partial pressure of oxygen is 65 mm Hg ? Apply Henry's Law.
11. Use PV = $n R T$ to calculate the number of moles of gas occupying a volume of 2.13 L at a pressure of 544 mm Hg and a temperature of $44.2^{\circ} \mathrm{C}$. Use $\mathrm{R}=0.0821$ $\mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}$.
\qquad
12a. How much energy is gained/released when 5.32 g of water at $100^{\circ} \mathrm{C}$ evaporates to form steam, given $\Delta \mathrm{H}_{\text {vap }}=40.68 \mathrm{~kJ} / \mathrm{mol}$? Show the correct sign.

$$
\Delta \mathrm{H}=
$$

\qquad

12b. How much energy is gained/released when 5.32 g of water is heated from $23^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? Use $\Delta \mathrm{H}=\mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}$ and $\mathrm{c}_{\mathrm{p}}=4.184 \mathrm{~J} /{ }^{\circ} \mathrm{Cg}$.

$$
\Delta \mathrm{H}=
$$

\qquad

12c. How much energy is gained/released when 5.32 g of water is both heated from $23^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and evaporated?

12d. Draw a diagram of Temperature (y-axis) versus Energy (x-axis) for 12c.
13. What is the concentration in units of molarity (M) for 2.48 L of aqueous solution containing 24.6438 g of dissolved NaCl ?
14. Define strong and weak electrolytes in 1-3 sentences.
\qquad
15. If the pH of human blood is 7.4 , calculate the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$. Use $\mathrm{pH}=-\log \left(\left[\mathrm{H}^{+}\right]\right)$and $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$. Give the correct units for $\left[\mathrm{H}^{+}\right]$. Watch sig figs!
16. Provide the equilibrium reaction between acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and acetate ion $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$in water. Label the Lewis acid/base and conjugate base/acid.
17. Find the concentration when 175 mL of a 1.6 M LiCl solution is diluted to 1.0 L .
18. A titration experiment uses 20.55 mL of 0.300 M sodium hydroxide (NaOH) to neutralize 50.00 mL of the diprotic acid sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. What is the concentration of the acid?
\qquad

\qquad

