\qquad

1. Convert $3.070 \times 10^{-5} \mathrm{~L}$ to mL .
2. Convert $88.42^{\circ} \mathrm{C}$ to K .
3. What is the charge on a single proton?
4. Give the symbol and name for the element with 18 protons. How many neutrons and electrons?
5. A liquid has a volume of 2.4 mL and a mass of 3.602 g . Calculate its density. Is it more or less dense than pure water?
6. Carbon has 2 naturally occurring isotopes: carbon-12 weighing $12.000 \mathrm{amu}(98.90 \%)$, and carbon-13 weighing 13.034 amu (1.10\%). Calculate the average atomic mass of carbon.
7. List 2 examples of pure substances.
8. List 2 examples of physical changes.
9. List 2 examples of a heterogeneous mixture.
10. Carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ has a melting point of $-22.9^{\circ} \mathrm{C}$ and a boiling point of $76.6^{\circ} \mathrm{C}$. What is the state of pure CCl_{4} at $94.0^{\circ} \mathrm{C}$?
11. Write the name and molecular formula for an ionic compound of the elements bromine and barium.
12. A piece of metal weighs 22.834 g . The metal is heated from $1.5^{\circ} \mathrm{C}$ to $70.2^{\circ} \mathrm{C}$. How much energy is gained by the metal upon heating if it has a heat capacity $\mathrm{c}_{\mathrm{p}}=0.44 \mathrm{~J} /{ }^{\circ} \mathrm{Cg}$?

$$
\Delta H=m c_{p} \Delta T
$$

\qquad
13. Give the chemical formula for:
a. magnesium chloride
b. iron (III) oxide
c. silver chloride
d. sodium hydroxide
e. sulfuric acid
14. Name the following compounds:
a. NaBr
b. FeO
c. BaSO_{4}
d. $\mathrm{Mg}(\mathrm{OH})_{2}$
e. $\mathrm{HCl}(\mathrm{aq})$
15. Write the molecular formula for caffeine, shown to the right.

16. Give 2 examples of diatomic molecules.
17. Are diatomic molecules polar or nonpolar?
18. Circle the reducing agent in the following redox reactions:
a. $2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}(\mathrm{s})$
b. $\quad \mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
c. $\quad \mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{MgCl}_{2}(\mathrm{~s})$
19. Indicate whether the following reactions are precipitation, neutralization, or redox.
$\left[\begin{array}{ll}\text { a. } & \mathrm{Fe}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \\ \text { b. } & 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{MgCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq}) \\ \square & \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})\end{array}\right.$
\qquad
20. Give the oxidation number for carbon in the following:
a. C (s)
b. $\mathrm{H}_{2} \mathrm{CO}(\mathrm{I})$
c. $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{I})$
d. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
e. CBr_{4} (I)
21. Predict whether the following covalent bonds are polar or non-polar using electronegativity difference:
a. $\mathrm{H}-\mathrm{Cl}$
b. $\mathrm{H}-\mathrm{C}$
c. $\mathrm{H}-\mathrm{S}$
d. $\mathrm{H}-\mathrm{H}$
22. Determine the limiting reactant when 19.3 g propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is burned in the presence of 70.8 g oxygen gas using the balanced combustion equation below. What is the theoretical yield of CO_{2} in grams? What is the percent yield if an experiment produced 99.6 g of CO_{2} ? Show your work, and write your answers below.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

\qquad
Percent yield: \qquad
\qquad
23. Give the complete and net ionic equations.

Molecular equation: $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{HNO}_{3}(\mathrm{aq})$

Complete Ionic equation:

Net ionic equation:
24. Give Lewis structures, molecular geometry (shape), and indicate if resonance structures exist for the following:

Lewis structure
shape resonance?
a. Cl_{2}
b. CO_{2}
c. NH_{3}
d. $\mathrm{NO}_{3}{ }^{-}$
e. $\mathrm{H}_{3} \mathrm{O}^{+}$
f. $\mathrm{H}_{2} \mathrm{O}$
g. OH^{-}
\qquad
25. Use the below expression for Gibbs Free Energy $\Delta \mathrm{G}$ to determine if carbon dioxide $\left(\mathrm{CO}_{2}\right)$ will spontaneously boil at 273 K . $\mathrm{For} \mathrm{CO}_{2}, \Delta \mathrm{H}_{\text {vap }}=15.326 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}_{\text {vap }}=70.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. Show a calculation for $\Delta \mathrm{G}$.

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

$$
\Delta \mathrm{G}=
$$

\qquad
\qquad
26. 3. Draw a reaction diagram (energy vs. time) for an exothermic reaction that releases 10 kJ of energy and has an activation energy of 5 kJ . Label the reactants, products, activation energy, enthalpy change, and both axes.
27. Use the Le Chatlier principle to predict the effects on the below equilibrium.

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\text { heat }
$$

shift: left/right/none? $\underline{C O}_{2}$ increases/decreases/stays the same?
a. increase $\mathrm{H}_{2} \mathrm{O}$
b. decrease $\mathrm{H}_{2} \mathrm{O}$
c. increase $\mathrm{H}_{2} \mathrm{CO}_{3}$
d. increase temperature
e. increase pressure
\qquad
28. Indicate the strongest intermolecular force (IMF) for the following as pure liquids. Choices are dipole-dipole interactions, London dispersion forces, and hydrogen bonding.
a. hexadecane $\left(\mathrm{C}_{16} \mathrm{H}_{34}\right)$
b. water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
c. ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$

d. methyl isocyante $\left(\mathrm{CH}_{3} \mathrm{NCO}\right)$

e. diatomic chlorine $\left(\mathrm{Cl}_{2}\right)$
$\mathrm{Cl}-\mathrm{Cl}$
f. ammonia $\left(\mathrm{NH}_{3}\right)$
g. formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$
29. Use the concept of IMFs to explain the low boiling point of helium, a noble gas, in 1-3 sentences.
30. Convert the pressure of 550 mm Hg into the unit atm.
\qquad
\qquad
31. A sample of air has a pressure of 843 mm Hg . The oxygen mole percent is 21%. Calculate the partial pressure of oxygen in mm Hg .

$$
\mathrm{P}_{\mathrm{O} 2}=
$$

\qquad
32. How much energy is gained/released when 15.2 g of ice melts to form water given $\Delta \mathrm{H}_{\text {fus }}=333 \mathrm{~J} / \mathrm{mol}$? Show the correct sign and number of significant figures.

$$
\Delta \mathrm{H}=
$$

\qquad
33. Use PV = nRT to calculate the number of moles of gas occupying a volume of 25.4 L at a pressure of 721 mm Hg and a temperature of $50^{\circ} \mathrm{C}$. Use $\mathrm{R}=0.0821$ L.atm/mol.K.

$$
\mathrm{n}=
$$

\qquad
34. What is the concentration in units of molarity (M) for 2.84 L of aqueous solution containing 10.3 g of dissolved HCl ?
\qquad
35. Provide the equilibrium reaction between formic acid (HCOOH) and formate ion $\left(\mathrm{HCOO}^{-}\right)$in water. Label the Lewis acid/base and conjugate base/acid.
36. What is the pH of a solution with $\left[\mathrm{H}^{+}\right]=3 \times 10^{-4} \mathrm{M}$?
37. What is the $\left[\mathrm{H}^{+}\right]$of a solution with $\mathrm{pH}=3.6$?
38. A titration experiment uses 40.60 mL of 0.205 M of magnesium hydroxide $\mathrm{Mg}(\mathrm{OH})_{2}$ to neutralize 50.00 mL of hydrochloric acid (HCl). What is the concentration of the acid?

$$
N_{\text {acid }} V_{\text {acid }}=N_{\text {base }} V_{\text {base }}
$$

39. Complete the following nuclear reactions for alpha emission:

$$
{ }_{92}^{238} U \rightarrow{ }_{2}^{4} \mathrm{He}+\text { ? }
$$

\qquad
Table of solubility guidelines for ionic compounds.

Soluble	Exceptions
Ammonium compounds $\left(\mathrm{NH}_{4}^{+}\right)$	None
Lithium compounds (Li^{+})	None
Sodium compounds (Na^{+})	None
Potassium compounds (K^{+})	None
Nitrates $\left(\mathrm{NO}_{3}{ }^{-}\right.$	None
Perchlorates ($\mathrm{ClO}_{4}{ }^{+}$)	None
Acetates ($\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$)	None
Chlorides (Cl^{-})	$\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+} compounds
Bromides (Br)	
Iodides (I)	
Sulfates ($\mathrm{SO}_{4}{ }^{2-}$)	$\mathrm{Ba}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+} compounds

\qquad

