Name: \qquad
[M2015E3P] 1. How much heat is gained or lost when a) 1 mole and b) $1 \mathrm{~kg}(1000 \mathrm{~g})$ of chlorine gas $\left(\mathrm{Cl}_{2}\right)$ reacts in the following equation? Show the correct sign number of significant figures for $\Delta \mathrm{H}$. Also state whether the reaction is exothermic or endothermic.

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}+337 \mathrm{kcal}
$$

$\Delta \mathrm{H}$ for $1 \mathrm{~mol} \mathrm{Cl}_{2}=$ \qquad
$\Delta \mathrm{H}$ for $1 \mathrm{~kg} \mathrm{Cl}_{2}=$ \qquad
Exothermic or endothermic? \qquad
2. Draw 3 reaction diagrams (energy vs. time) side by side, using the same scale. Label the reactants, products, activation energy, enthalpy change, and both axes.
a) exothermic reaction releasing 100 J of energy with activation energy 50 J .
b) exothermic reaction releasing 100 J of energy with activation energy 100 J .
c) exothermic reaction releasing 50 J of energy with activation energy 200 J .
\qquad

3. Convert the following units:

a) $4.184 \mathrm{~J} \rightarrow \mathrm{cal}$
b) $4.184 \mathrm{~kJ} \rightarrow \mathrm{kcal}$
c) $523 \mathrm{~J} \rightarrow$ Cal (food calories)
d) $6.0 \mathrm{Cal} \rightarrow \mathrm{cal}$
e) $9000 \mathrm{cal} \rightarrow \mathrm{J}$
[131 E2P-1] 4. Calculate the heat, in Joules, required for the following
a) heating 25.0 g of water from $20.0^{\circ} \mathrm{C}$ to $60.0^{\circ} \mathrm{C}\left(\mathrm{C}=4.184 \mathrm{~J} /{ }^{\circ} \mathrm{Cg}\right.$ for water)
b) heating 25.0 g water from $60.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$
c) heating 25.0 g of water from $20.0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
d) heating 25.0 g copper from $60.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$ ($\mathrm{c}=0.385 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ g for copper)
e) cooling 25.0 g copper from $20.0^{\circ} \mathrm{C}$ to $-20.0^{\circ} \mathrm{C}$
\qquad
5. Use the below expression for Gibbs Free Energy $\Delta \mathrm{G}$ to determine if water will spontaneously boil at 300K, 350 K , and 400 K . For water, $\Delta \mathrm{H}_{\text {vap }}=40.68 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}_{\text {vap }}=118.89$ $\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$. Show 3 calculations for $\Delta \mathrm{G}$, and watch your units. Indicate as spontaneous or not at each temperature.

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

$\Delta \mathrm{G}(300 \mathrm{~K})=\ldots$	Spontaneous? ___
$\Delta \mathrm{G}(350 \mathrm{~K})=\ldots$	Spontaneous? ___
$\Delta \mathrm{G}(400 \mathrm{~K})=\ldots$	

\qquad
5. Use the Le Chatlier principle to predict the effects on the below equilibrium.

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g) \Delta H=+43 \mathrm{kcal} / \mathrm{mol}(+180 \mathrm{~kJ} / \mathrm{mol})
$$

a. Does the NO level increase, decrease, or stay the same when more O_{2} is added?
b. What happens to N_{2} when more O_{2} is added?
c. What happens to NO when the total pressure is increased?
d. What happens to NO when the temperature is increased?
e. What happens to NO when a catalyst is added?

6. Write an equilibrium constant expression (capital K)

 for the above reaction in \#5.