Name: _____

[M2015E3P] 1. How much heat is gained or lost when a) 1 mole and b) 1kg (1000 g) of chlorine gas (Cl₂) reacts in the following equation? Show the correct sign number of significant figures for Δ H. Also state whether the reaction is exothermic or endothermic.

2 Al (s) + 3 Cl₂ (g) \rightarrow 2 AlCl₃ + 337 kcal

 ΔH for 1 mol Cl₂ =_____

 ΔH for 1 kg Cl₂ =_____

Exothermic or endothermic?

2. Draw 3 reaction diagrams (energy vs. time) side by side, using the same scale. Label the reactants, products, activation energy, enthalpy change, and both axes.

a) exothermic reaction releasing 100 J of energy with activation energy 50 J.

b) exothermic reaction releasing 100 J of energy with activation energy 100 J.

c) exothermic reaction releasing 50 J of energy with activation energy 200 J.

Name: ____

3. Convert the following units:

a) 4.184 J → cal

b) 4.184 kJ \rightarrow kcal

c) 523 J \rightarrow Cal (food calories)

d) 6.0 Cal \rightarrow cal

e) 9000 cal \rightarrow J

[131 E2P-1] 4. Calculate the heat, in Joules, required for the following a) heating 25.0 g of water from 20.0 °C to 60.0 °C (c = 4.184 J/°C g for water)

b) heating 25.0 g water from 60.0 °C to 100.0 °C

c) heating 25.0 g of water from 20.0 °C to 100 °C

d) heating 25.0 g copper from 60.0 °C to 100.0 °C (c = 0.385 J/°C g for copper)

e) cooling 25.0 g copper from 20.0 °C to -20.0 °C

5. Use the below expression for Gibbs Free Energy Δ G to determine if water will spontaneously boil at 300K, 350 K, and 400 K. For water, $\Delta H_{vap} = 40.68$ kJ/mol and $\Delta S_{vap} = 118.89$ J/mol·K. Show 3 calculations for Δ G, and watch your units. Indicate as spontaneous or not at each temperature.

 $\Delta G = \Delta H - T \Delta S$

ΔG(300 K) =	Spontaneous?
∆G(350 K) =	Spontaneous?
ΔG(400 K) =	Spontaneous?

Name: ____

5. Use the Le Chatlier principle to predict the effects on the below equilibrium.

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g) \Delta H = +43 \text{ kcal/mol} (+180 \text{ kJ/mol})$

- a. Does the NO level increase, decrease, or stay the same when more O₂ is added?
- b. What happens to N_2 when more O_2 is added?
- c. What happens to NO when the total pressure is increased?
- d. What happens to NO when the temperature is increased?
- e. What happens to NO when a catalyst is added?

6. Write an equilibrium constant expression (capital K) for the above reaction in #5.