1. Draw Lewis structures for each. Indicate any polarity using $\delta^{\scriptscriptstyle +}$ and $\delta^{\scriptscriptstyle -}$ Indicate the strongest intermolecular force (IMF) present. Choose from: - hydrogen bonding, - dipole-dipole forces, - or London dispersion forces (also known as van der Walls forces). | Name: | | |--------|--| | Maine. | | | | | 2. Circle the chemical species in each pair that you would expect to have the <u>higher boiling</u> point. Provide a brief explanation (1 sentence max.) using IMF concepts. | a) HF | VS. | F_2 | | | |-------|------------|--------------|--------------|--| | Why: | | nd us. | Condon | | | b) NO | lightyasyn | wetre/ polar | _ completely | symmetra to symmetry completely nonpolar | | Why: | dia | ole US | . Condon | | 3. What is responsible for the high boiling point of HF (19.7 °C) relative to HCl (-84.8 °C) and HBr (-66.4 °C)? - a. hydrogen bonding - b. dipole/induced dipole force - c. induced dipole/induced dipole force - d. covalent bonding - e. dipole-dipole force | 4. Which one of the | following molecules has the lowest | , (b.P | |---------------------|--|--------| | boiling point? | polar-habiest | insher | | a. CH4 b. CHCl3 | c. CH ₂ Cl ₂ d. CH ₃ Cl e. CCl ₄ | ymator | 5. Which of the following boils at the <u>lowest</u> temperature? 6. Arrange Cl₂, ICl, and Br₂ in order from <u>lowest to highest</u> boiling point. | I-Cl postar | Cl2/Br | - non | poler
38er | higher b.P. | |-----------------|-----------|--------|---------------|-------------| | I-Clostar Lilis | 2/2 < B12 | < Icly | Sport. | Page 3 of 4 | | | ., =0, =0. | _ | |-------|------------|---| | Name: | | | | | | | - 7. Calculate the heat, in Joules, required for the following. Indicate as exothermic or endothermic. - a. heating 25.0 g of water from 20.0 °C to 60.0 °C (c_p = 4.184 J/°C g for water) b. heating 25.0 g water from 60.0 °C to 100.0 °C Same as a) 4/84J 0085 1100 11 c. boiling 25.0 g of water at 100 °C into steam ($\Delta H_{vap} = 2260 \text{ k/mol}$) 1H = m 14mp = (25,00) (2240 ET) =56,5000 F d. condensing 25.0 g of steam at 100 °C into water 14 = -56,500 KT (some as c) e. heating 25.0 g of water from 20.0 °C to 100 °C and boiling into steam = (a) + (b) + (c) = (184) + copper) 14 = m Cp DT = (25.09) (40.00°C) g. cooling 25.0 g copper from 20.0 °C to -20.0 °C Same, negatile as a) (-385