Name:

1. Draw Lewis structures for each. Indicate any polarity using $\delta^{\mbox{\tiny +}}$ and $\delta^{\mbox{\tiny -}}.$

Indicate the strongest intermolecular force (IMF) present. Choose from:

- hydrogen bonding,
- dipole-dipole forces,
- or London dispersion forces (also known as van der Walls forces).
 - a) O_2
 - b) SO₂
 - c) H₂O
 - d) HF (g), hydrogen fluoride gas (not an acid)
 - e) HCl (g)
 - f) NH₃, ammonia
 - g) CO₂

Name:

2. Circle the chemical species in each pair that you would expect to have the <u>higher boiling</u> point. Provide a brief explanation (1 sentence max.) using IMF concepts.

- a) HF vs. F₂
 Why: ______
- b) NO vs. O₂
 Why: _____
- c) Cl₂ vs. F₂
 Why: ______
- d) C₂H₆ vs. CH₄
 Why: ______
- e) H Vs. H H H

Why: _____

Name: _____

3. What is responsible for the <u>high boiling point</u> of HF (19.7 °C) relative to HCl (-84.8 °C) and HBr (-66.4 °C)?

- a. hydrogen bonding
- b. dipole/induced dipole force
- c. induced dipole/induced dipole force
- d. covalent bonding
- e. dipole-dipole force

4. Which one of the following molecules has the <u>lowest</u> boiling point?

a. CH₄ b. CHCl₃ c. CH₂Cl₂ d. CH₃Cl e. CCl₄

5. Which of the following boils at the <u>lowest</u> temperature?

a. C_4H_{10} b. C_5H_{12} c. C_6H_{14} d. C_7H_{16} e. C_8H_{18}

6. Arrange Cl₂, ICl, and Br₂ in order from <u>lowest to</u> <u>highest</u> boiling point.

Name: _____

- 7. Calculate the heat, in Joules, required for the following. Indicate as exothermic or endothermic.
- a. heating 25.0 g of water from 20.0 °C to 60.0 °C (c_p = 4.184 J/°C g for water)
- b. heating 25.0 g water from 60.0 $^{\circ}$ C to 100.0 $^{\circ}$ C
- c. boiling 25.0 g of water at 100 °C into steam ($\Delta H_{vap} = 2260 \text{ kJ/mol}$)
- d. condensing 25.0 g of steam at 100 °C into water
- e. heating 25.0 g of water from 20.0 °C to 100 °C and boiling into steam
- f. heating 25.0 g copper from 60.0 °C to 100.0 °C (c_p = 0.385 J/°C g for copper)
- g. cooling 25.0 g copper from 20.0 °C to -20.0 °C